
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2016

Doc 27 NoSQL
Dec 6, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, December 6, 16

Relational Databases and SQL

2

Database consists of a number of tables

Table is a collection of records

Each Column of data has a type

+----------------------+----------------------+------------+----------+

| firstname | lastname | phone | code |

+----------------------+----------------------+------------+----------+

| John | Smith | 555-9876 | 2000 |

| Ben | Oker | 555-1212 | 9500 |

| Mary | Jones | 555-3412 | 9900 |

+----------------------+----------------------+------------+----------+

Use Structured query language (SQL) to access data

Tuesday, December 6, 16

Common SQL Statements

3

SELECT Retrieves data from table(s)
INSERT Adds row(s) to a table
UPDATE Changes field(s) in record(s)
DELETE Removes row(s) from a table Data Definition
CREATE TABLE Define a table and its columns(fields)
DROP TABLE Deletes a table
ALTER TABLE Adds a new column, add/drop primary key
CREATE INDEX Create an index
DROP INDEX Deletes an index
CREATE VIEW Define a logical table from other table(s)/view(s)
DROP VIEW Deletes a view

SQL is not case sensitive but data is case sensitive

Tuesday, December 6, 16

Creating a Table

4

CREATE TABLE IF NOT EXISTS SampleTable (
name TEXT UNIQUE ,
age INTEGER check(typeof(age) = 'integer') ,
is_student BOOL,
description TEXT check(typeof(description) = 'text') ,
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL)

name age is_student description id

Tuesday, December 6, 16

ACID

5

Atomicity
Transactions are all or nothing

Consistency
Transactions change the database from one valid state to valid state

Isolation
Transaction’s affect is not seen until transaction is done
Concurrent transactions will have the same affect as if they were done serially

Durability
Once a transaction is done its changes remain

Tuesday, December 6, 16

https://en.wikipedia.org/wiki/ACID

Issues with SQL Databases

6

Need to know structure of data in advance

Difficult to modify structure after created

Difficulty in scaling

Performance

Tuesday, December 6, 16

Scaling to Multiple Machines - Replication

7

Each machine has complete copy

Large Database

Large Database

Machine 1

Large Database

Machine 2

Tuesday, December 6, 16

Scaling to Multiple Machines - Sharding

8

Each machine has only part of the data

Large Database

Large

Machine 1

Database

Machine 2

Tuesday, December 6, 16

CAP Theorem

9

CAP theorem says in a distributed system you can not have all three
Consistency
Availability
tolerance to network Partitions

Tuesday, December 6, 16

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Consistency

10

A = 2 A = 2

Machine 1 Machine 2

A = 2 A = 3Not Consistent

Tuesday, December 6, 16

Partition

11

A = 2 A = 2

Machine 1 Machine 2

A = 2 A = 2
Partitioned

Machine 1 cannot
talk to machine 2

But how does machine 1 tell the difference between no connection and a very slow
connection or busy machine 2?

Tuesday, December 6, 16

Latency

12

Latency
Time between making a request and getting a response

Distributed systems always have latency

In practice detect a partition by latency

When no response in a given time frame assume we are partitioned

Tuesday, December 6, 16

Available

13

A = 2 A = 2

Machine 1 Machine 2

Client

A = 2 A = 2Client
Client can not access
value of A

What does not available mean?
No connection
Slow connection
What is the difference?

Some say high available - meaning low latency

In practice available and latency are related

Tuesday, December 6, 16

Consistency over Latency

14

A = 2 A = 2Set A to 3

A = 2 A = 2Set A to 3 Lock A

A = 2 A = 2Set A to 3 Set A to 3

A = 3 A = 3Set A to 3 Unlock A

Machine 1 Machine 2

Write requests
queued until unlocked

Increased latency
System still available

A = 3 A = 3

Tuesday, December 6, 16

Latency over Consistency

15

A = 2 A = 2Set A to 3

Machine 1 Machine 2

Write requests
accepted

Low latency
System inconsistent A = 3 A = 2

Set A to 3

A = 3 A = 2

A = 3 A = 3

Tuesday, December 6, 16

Latency over Consistency - Write Conflicts

16

A = 2 A = 2Set A to 3

Machine 1 Machine 2

A = 3 A = 1
Set A to 3

Subtract 1 from A

A = ? A = ?
Need policy to make
system consistent

A = 3 A = 2
Subtract 1 from A

Tuesday, December 6, 16

Partition

17

A = 2 A = 2

Machine 1 Machine 2

A = ? A = ?
Need policy to make
system consistent

A = 2 A = 2

Set A to 3
A = 3 A = 1

Subtract 1 from A

Tuesday, December 6, 16

CAP Theorem

18

Not a theorem

Too simplistic
What is availability
What is a partition of the network

Misleading

Intent of CAP was to focus designers attention on the tradeoffs in distributed systems

How to handle partitions in the network
Consistency
Latency
Availability

Tuesday, December 6, 16

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

NoSQL verses ACID SQL Database

19

NoSQL databases
Tend to prioritize low latency over consistency

ACID SQL databases
Prioritize consistency over low latency

This is why NoSQL databases tend to scale better than SQL databases

Tuesday, December 6, 16

More Terminology

20

BASE - Basically Available, Soft state, Eventual consistency

Systems that favor low latency over consistency

Tuesday, December 6, 16

NewSQL

21

Modern databases that
- SQL as a primary interface
- ACID support for transactions
- Non-locking architecture
- High per-node performance
- Scalable, shared nothing architecture

Examples
Google Spanner
VoltDB
MySQL Cluster
CockroachDB

NewSQL databases become
competitive with NoSQL

Tuesday, December 6, 16

http://www.slideshare.net/IvanGlushkov/newsql-overview

NoSQL Database

22

Don’t use
SQL
Tables

NoSQL database types

Document (XML, YAML, JSON, BSON)
MongoDB, CouchDB, Couchbase, ...

Graph
Neo4J, AllegroGraph, ...

Key-value
SimpleDB, DynamoDB, Redis, Oracle NoSQL, ...

Column
Accumulo, Cassandra, HBase,

Tuesday, December 6, 16

Issues

23

If no SQL how to access/modify database

How to structure the data

Tuesday, December 6, 16

HBase

24

Problem with HDFS - no random access to data

How do you store 4+ billion web pages so you can search them fast

2006 - Google BigTable
Fault-tolerant way of storing large quantities of sparse data

2007 - HBase started as part of Hadoop

2010 - Hbase becomes Apache top-level project

2015 - Hbase 1.0 released

Tuesday, December 6, 16

HBase

25

Written in Java

Runs in
Standalone, Pseudo-distributed, Cluster

Stores data in HDFS

Has interactive shell

Hadoop & Spark can read/write to Hbase

In CAP theorem
C - consistency
P - partition tolerance

Tuesday, December 6, 16

HBase - Users

26

Facebook uses HBase for its messaging platform

Spotify uses HBase as base for Hadoop and machine learning jobs

Airbnb uses HBase as part of its AirStream realtime stream computation framework

Twitter

Yahoo

Tuesday, December 6, 16

HBase - Parts

27

Namespace
Group of tables - like database in relational databases

Table
Group of rows

Row
One or more columns
A row has a row key - just bytes
Rows are sorted by row key

Column-families
Group of columns
When create table must specify column families
Each column family can contain any number of columns
HBase does not do well with more than three column families per table

Tuesday, December 6, 16

HBase - Parts

28

Column
Consists of a column family name & column qualifier
Different rows can have different columns

Cell
At a given Row and Column Hbase stores a cell
Each cell contains a value and a timestamp
Value - bytes

Tuesday, December 6, 16

Some Shell Operations

29

create
create a table

get
get a given row
get a value at a row and column

put
Add/modify a value at a row & column

scan
Show the rows in a table

list
List the tables

Tuesday, December 6, 16

30

hbase(main):002:0> create 'testtable', 'names'
0 row(s) in 1.5660 seconds
=> Hbase::Table - testtable

hbase(main):003:0> list
TABLE
testtable
1 row(s) in 0.0320 seconds
=> ["testtable"]

hbase(main):004:0> put 'testtable', 'person-1', 'names:first', 'Roger'
0 row(s) in 0.4690 seconds

hbase(main):005:0> put 'testtable', 'person-2', 'names:first', 'Peter'
0 row(s) in 0.0190 seconds

hbase(main):006:0> put 'testtable', 'person-2', 'names:last', 'Rabbit'
0 row(s) in 0.0180 seconds

Tuesday, December 6, 16

31

hbase(main):008:0> scan 'testtable'
ROW COLUMN+CELL
 person-1 column=names:first, timestamp=1480995132309, value=Roger
 person-2 column=names:first, timestamp=1480995947448, value=Peter
 person-2 column=names:last, timestamp=1480995995526, value=Rabbit
2 row(s) in 0.0380 seconds

hbase(main):010:0> get 'testtable', 'person-2'
COLUMN CELL
 names:first timestamp=1480995947448, value=Peter
 names:last timestamp=1480995995526, value=Rabbit
2 row(s) in 0.0470 seconds

Tuesday, December 6, 16

32

hbase(main):011:0> put 'testtable', 'person-3', 'names:last', 'Gates'
0 row(s) in 0.0160 seconds

hbase(main):012:0> put 'testtable', 'person-3', 'names:first', 'William'
0 row(s) in 0.0040 seconds

hbase(main):013:0> put 'testtable', 'person-3', 'names:Middle', 'Henry'
0 row(s) in 0.0030 seconds

hbase(main):014:0> put 'testtable', 'person-3', 'names:knickname', 'Bill'
0 row(s) in 0.0050 seconds

hbase(main):015:0> get 'testtable', 'person-3'
COLUMN CELL
 names:Middle timestamp=1480996890990, value=Henry
 names:first timestamp=1480996861847, value=William
 names:knickname timestamp=1480996931417, value=Bill
 names:last timestamp=1480996838910, value=Gates
4 row(s) in 0.0220 seconds

Tuesday, December 6, 16

