
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2016

Doc 23 Sorting & Partitioning
Nov 17, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, November 17, 16

Issues

2

Structured data, binary format

Sorting data
What if want to WordCount output sorted by count

Key-Value pairs
One key & one value
What if each record has N different items

Multiple Reducers
How to balance load
How to group data when has N different items
How to global sort data so can

just append output files to get sorted data

Thursday, November 17, 16

Resources

3

Hadoop MapReduce v2 Cookbook 2nd Ed

Chapter 4 Developing Complex Hadoop MapReduce Applications
Through Secondary Sorting

Thursday, November 17, 16

Resources

4

http://blog.ditullio.fr/2015/12/18/hadoop-basics-working-with-sequence-files/

https://goo.gl/kE4yV1

Hadoop Basics
Working with Sequence Files
Filter, Aggregate, & Sort with MapReduce
Secondary Sort
Total Order Sorting in MapReduce
Repartition Join in MapReduce
Replicated join in MapReduce
Bloom Filters
Running SQL Queries with Hive

Thursday, November 17, 16

Example - Dataset

5

_donationid
_projectid
_donor_acctid
_cartid
donor_city
donor_state
donor_zip
is_teacher_acct
donation_timestamp
donation_to_project

donation_optional_support
donation_total
dollar_amount
donation_included_optional_support
payment_method
payment_included_acct_credit
payment_included_campaign_gift_card
payment_included_web_purchased_gift_card
payment_was_promo_matched
via_giving_page for_honoree
thank_you_packet_mailed
donation_message

DonorsChoose project & donation database

1.6 GB csv file

Thursday, November 17, 16

Sequence Files

6

Why important - Shows how to deal with structured data

Sequence File
Sequence of binary key-value records

Don’t have to parse in map function
Supports compression for free

Compression Sequence File
Size HDFS Blocks Write Time Read Time

None 1.19 GB 10 8 min 50 s 1 min 12 s

Record 1.01 GB 9 15 min 05 s 3 min 52 s

Block 493 MB 4 11 min 49 s 1 min 18 s

Thursday, November 17, 16

Filter, Aggregate and Sort

7

“View all donor cities by descending order of donation total amount,
considering only donations which were not issued by a teacher. City
names should be case insensitive (using upper-case)”

SELECT SUM(total) as sumtotal, UPPER(donor_city) as city
FROM donations
WHERE donor_is_teacher != 't'
GROUP BY UPPER(donor_city)
ORDER BY sumtotal DESC;

Filtering on the value of donor_is_teacher
Aggregating the sum of total values grouping by city
Sorting on the aggregated value sumtotal

Thursday, November 17, 16

8

First Job : Filtering and Aggregation
Map

Input : DonationWritables “full row” objects from the SequenceFile.
Output : (city, total) pairs if donor_is_teacher is not true.

Reduce
Reduce by summing the “total” values for each “city” key.

Second Job : Sorting
Map

Input : (city, sumtotal) pairs with summed total per city.
Output : (sumtotal, city) inversed pair.

Reduce
Identity reducer. Does not reduce anything,

but the shuffling will sort on keys for us.

Thursday, November 17, 16

Issue

9

Hadoop sorting uses increasing order

We want decreasing order

Thursday, November 17, 16

10

public static class DescendingFloatComparator extends WritableComparator {

 public DescendingFloatComparator() {
 super(FloatWritable.class, true);
 }

 @SuppressWarnings("rawtypes")
 @Override
 public int compare(WritableComparable w1, WritableComparable w2) {
 FloatWritable key1 = (FloatWritable) w1;
 FloatWritable key2 = (FloatWritable) w2;
 return -1 * key1.compareTo(key2);
 }
 }

job.setSortComparatorClass(DescendingFloatComparator.class)

Thursday, November 17, 16

Secondary Sort

11

View the id, donor’s state, donor’s city and total donation amount for all
donations which have a defined state and city of origin. Order the results
by priority of :

State – ascending alphabetical order (case insensitive)
City – ascending alphabetical order (case insensitive)
Total amount – descending numerical order

SELECT donation_id, donor_state, donor_city, total
FROM donations
WHERE donor_state IS NOT NULL AND donor_city IS NOT NULL
ORDER BY lower(donor_state) ASC, lower(donor_city) ASC, total DESC;

Thursday, November 17, 16

Issue

12

Only have key & value - How to encode four items

Use tuple for key and/or value

Sorting is done on keys so make key
(state,city,total)
Implementing a custom Hadoop key type in Hadoop MapReduce Cookbook

How to sort the keys?

If have multiple reducers how to make sure
all keys with same state goes to same reducer?

How should reducer group the key-value pairs?

Thursday, November 17, 16

13

public class CompositeKey implements WritableComparable<CompositeKey> {

 public String state;
 public String city;
 public float total;

 public CompositeKey() { }

 public CompositeKey(String state, String city, float total) {
 super();
 this.set(state, city, total); }

 public void set(String state, String city, float total) {
 this.state = (state == null) ? "" : state;
 this.city = (city == null) ? "" : city;
 this.total = total; }

Thursday, November 17, 16

14

 public void write(DataOutput out) throws IOException {
 out.writeUTF(state);
 out.writeUTF(city);
 out.writeFloat(total); }

 public void readFields(DataInput in) throws IOException {
 state = in.readUTF();
 city = in.readUTF();
 total = in.readFloat(); }

 public int compareTo(CompositeKey o) {
 int stateCmp = state.toLowerCase().compareTo(o.state.toLowerCase());
 if (stateCmp != 0) {
 return stateCmp;
 } else {
 int cityCmp = city.toLowerCase().compareTo(o.city.toLowerCase());
 if (cityCmp != 0) {
 return cityCmp;
 } else {
 return Float.compare(total, o.total);
 }
 }
 }

}

Thursday, November 17, 16

15

Partitioner
Divides map output for reducers
Default use keys hasCode()

SortComparator

GroupComparator

Thursday, November 17, 16

Partitioner

16

Want partitioner that sends data from a state to same reducer

import org.apache.hadoop.mapreduce.Partitioner;
import data.writable.DonationWritable;

public class NaturalKeyPartitioner extends Partitioner<CompositeKey, DonationWritable> {

 @Override
 public int getPartition(CompositeKey key, DonationWritable value, int numPartitions) {
 return Math.abs(key.state.hashCode() & Integer.MAX_VALUE) % numPartitions;
 }
}

job.setPartitionerClass(NaturalKeyPartitioner.class)

Thursday, November 17, 16

Issues with Partitioner

17

Data may not be spread evenly among reducers

If we what data sorted by state we will have to
Merge output files
Sort

Thursday, November 17, 16

Grouping

18

Pair Key (CompositeKey)

A [state=”AZ“, city=”Phoenix”, total=10.00]

B [state=”TX“, city=”Dallas“, total=7.00]

C [state=”TX“, city=”Dallas“, total=5.00]

D [state=”TX“, city=”Houston”, total=10.00]

Grouping Calls to reduce(key, [values])

Default

reduce(A.key, [A.value])
reduce(B.key, [B.value])
reduce(C.key, [C.value])
reduce(D.key, [D.value])

Group by
“state,city”

reduce(A.key, [A.value])
reduce(B.key, [B.value, C.value])
reduce(D.key, [D.value])

Group by “state” reduce(A.key, [A.value])
reduce(B.key, [B.value, C.value, D.value])

Thursday, November 17, 16

GroupComparator

19

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class NaturalKeyComparator extends WritableComparator {

 public NaturalKeyComparator() {
 super(CompositeKey.class, true);}

 public int compare(WritableComparable wc1, WritableComparable wc2) {
 CompositeKey key1 = (CompositeKey) wc1;
 CompositeKey key2 = (CompositeKey) wc2;
 return key1.state.compareTo(key2.state);
 }
}

job.setGroupingComparatorClass(NaturalKeyComparator.class)

Thursday, November 17, 16

Total Order Sorting in MapReduce

20

Manual Partitioning

TotalOrderPartitioner - partition on simple key types

Total Secondary Sorting

Thursday, November 17, 16

Manual Partitioning

21

Reducer 0 : state names starting with A to I (includes 9 letters)
Reducer 1 : state names starting with J to Q (includes 8 letters)
Reducer 2 : state names starting with R to Z (includes 9 letters)

import org.apache.hadoop.mapreduce.Partitioner;
import data.writable.DonationWritable;

public class CustomPartitioner extends Partitioner<CompositeKey, DonationWritable> {
 public int getPartition(CompositeKey key, DonationWritable value, int numPartitions) {
 if (key.state.compareTo("J") < 0) {
 return 0;
 } else if (key.state.compareTo("R") < 0) {
 return 1;
 } else {
 return 2;
 }
 }
}

Thursday, November 17, 16

TotalOrderPartitioner

22

Dynamically determines how to partition to balance load

InputSampler
Samples data across all input splits
Uses job’s SortComparator to sort data
Creates partition file to indicate how to partition data

TotalOrderPartitioner use partition file to send data to reducers

Types of InputSamplers
RandomSampler
IntervalSampler
SplitSampler

Thursday, November 17, 16

