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Neural Networks
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All you really need to know for the moment is that the universe is a lot 
more complicated than you might think, even if you start from a position 
of thinking it’s pretty damn complicated in the first place.

--- Douglas Adams, Hitchhikers Guide to the Universe
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Example
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Apples Oranges Total Cost

2 3 5

9 4 16

4 8 10.5

let w(a) = cost of apple
     n(a) = number of apples
  w(o) = cost of orange
  n(o)  = number of oranges
  t = transaction fee

Total Cost = w(a)*n(a) + w(o)*n(o) + t

Find w(a) and w(o)
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Apples Oranges Total Cost Guess

2 3 5 6

9 4 16 14

4 8 10.5 13

w(a) - guess 1
w(o) - guess 1
t - guess 1

Apples Oranges Total Cost Guess

2 3 5 2.5

9 4 16 6.5

4 8 10.5 6

Too high in two cases

w(a) - guess 0.5
w(o) - guess 0.5
t   - guess 0

Apples Oranges Total Cost Guess

2 3 5 4.5

9 4 16 10.5

4 8 10.5 9.75

Too low

w(a) - guess 0.75
w(o) - guess 0.75
t - guess 0.75

Too low
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Need
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Measure of how far off guess is from data

Systematic way to change weights
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Loss Function
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Measure of how the data differs from estimate

Linear case

Yi = data value
Yi_hat = computed value
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Activation Function
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Function that we are trying to fit

In example linear function with two independent variables   

f(x1,x2) = a*x1 + b*x2 + c

= w1*x1 + w2*x2 + b

w1, w1 are the weights

b is the bias 
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Bias
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Prejudice in favor of one thing 

Positive values being for
Negative values being against

Consider x = 0 neutral input

Then if f is neutral function f(0) == 0

f(x1, x2) = w1*x1 + w2*x2 + b

f(0, 0) = b

So f has a bias
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x1

f(x)

x2 x3

Pick x1

Find the slope at f(x1) ie take derivative

Use slope to estimate where f(x) is zero = x2 

Repeat process until f(xn) is really close to 0
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Gradient Descent
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gradient is the derivative of multi-dimensional function
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Fundamentals of Deep Learning, Buduma, O’Reilly Media, Inc., Second Early Release



Systematic way to change weights
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Take derivative of activation function get gradient

Use the slope in the x1 dimension to adjust w1

Use the slope in the x2 dimension to adjust w2

f(x1, x2) = w1*x1 + w2*x2 + b
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How far to go?
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Learning Rate
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To avoid overshooting multiply the gradient by a factor - say 0.1

This is called the learning rate

Take derivative of activation function get gradient

Use the slope in the x1 dimension * learning rate to adjust w1

Use the slope in the x2 dimension * learning rate to adjust w2
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Terms
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Loss Function

Activation Function

Learning Rate

Weights

Bias
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Basic Algorithm

15

f(x1, x2) = w1*x1 + w2*x2 + b

Select initial values for w1, w2, b

Take derivative of activation function get gradient
w1 =  w1 + the slope in the x1 dimension * learning rate * Error 
w2 =  w2 + the slope in the x2 dimension * learning rate * Error
b =  b + gradient * learning rate * Error

1. Compute loss function on data to find the error

2. Update w1, w2, b

Repeat 1 & 2 until error is acceptable
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Learning Rate
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If too small then take too long for result to converge

If too large then algorithm will jump arround too much and not converge
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Basic Structure of Neuron
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Knet.jl
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Deep learning framework 

Developed at in Koç University in Turkey

Hides some complexity

Can use GPU

Define
activation (predict) function
loss function

Then train the data
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Linear Knet Example
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using Knet

activation(w,x) = w[1]*x .+ w[2]

loss(w,x,y) = sumabs2(y - activation(w,x)) / size(y,2)

lossgradient = grad(loss)   # grad computed gradient 

function train(w, data; learning_rate=.1)
    for (x,y) in data
        dw = lossgradient(w, x, y)
        for i in 1:length(w)
            w[i] -= learning_rate * dw[i]
        end
    end
end
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x = rand(10)
y = 2 .* x .+ 3  #exact model so we know 
x = x'
y = y'
w = [2.5,3.5]

for i in 1:20
  train(w,[(x,y)], learning_rate = 0.1)
  println(loss(w,x,y))
end

Loss value

First   0.34

Last   0.001

w:
 2.09855
 2.94161
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Varying Learning Rate
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Learning rate 0.01 Loss value

First  0.43
Last  0.26

w:
 2.45
 3.29

Learning rate 1.0 Loss value

First  0.83
Last  21299.5

w:
 53.0
 129

Learning rate 0.1 Loss value
w:
 2.10
 2.94

First  0.34
Last  0.001
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Varying Starting Point
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Learning rate 0.01
w = [0.0, 0.0]

Loss value

First  9.1
Last  0.005

w:
 1.76
 3.12

Learning rate 0.01
w = [-10.0, -10.0]

Loss value

First  208
Last  0.76

w:
-1.01
 4.56

Learning rate 0.01
w = [10.0, -10.0]

Loss value

First  52
Last  6.76

w:
10.9
 -1.81
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Neural Networks Parameters 
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Input weights

Learning Rate
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Linear Neurons - Perceptrons 
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Linear neurons even when combined have limited use

Need more types of neurons 
Each type needs gradient function & loss function

Layers of neurons

Tuesday, October 18, 16



Types of Neurons/Activation Functions
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Sigmoid
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Tanh
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Restricted Linear Unit (ReLU)
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Softmax
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softmax_norm(x) = 1 ./(1 + exp(-(x - mean(x))/std(x)))

Recall from clustering

Often used as output neuron
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Loss functions
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mean square log error
MSLE

Hinge loss
Binary classification

Logisitic loss
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Neural Networks Parameters 
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Input weights

Learning Rate

Loss function

Activation function
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Layers
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Even with different types of neurons single neurons are not very useful

Create layers of neurons
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Deep Learning, Gibson & Patterson, O’Reilly Media, Inc. , Early Release
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One neuron
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Forward Propagation
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Input data goes to input layer
Each neuron passes its ouput to the next layer
Below is a fullly connected neural network
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Backpropagation
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How to adjust weights for each neuron?

Adjust the weights of the last layer as before

Using these weights we can compute what the inputs to last layer should be

We can now use those estimates to adjust the previous layers weights

Tuesday, October 18, 16



Neural Networks Parameters 
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Input weights per neuron

Learning rate per neuron

Loss function per neuron

Activation function per neuron

Number of layers

Number of neurons per layer

How neurons are connected

Tuesday, October 18, 16



Overfitting 
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Hyperparameters
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Things we can change to make neural networks train better

Learning Rate
Activation functions
Weight initalization strategies
Loss functions
Normalization
Layer size & number of layers

mini-batch size
Regularization
Momentum
Sparsity
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Work Flow
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Input
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Need to map input into vector
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Fundamentals of Deep Learning, Buduma, O’Reilly Media, Inc., Second Early Release



Images & Scaling 
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Image of 32 pixels by 32 pixels with 3 color channels (RGB)

Fully connected neuron needs 32*32*3 = 3,072 weights

Image of 200 pixels by 200 pixels with 3 color channels (RGB)

Fully connected neuron needs 200*200*3 = 120,000 weights

Image researchers use up to 150 layers
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Deep Learning
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More neurons than previous networks
More complex ways of connecting layers
Explosion of computing power to train
Automatic feature extraction

Unsupervised Pre-Trained Networks
Convolutional Neural Networks

Common for image Analysis
Recurrent Neural Networks

Time series analysis
Recursive Neural Networks

Some Deep Learning Networks
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Convolutional Neural Network
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Convolutional Layer
3-D network of neurons
Only locally connected
Each 2-D slice in depth share same weight

Pooling Layer
Down-sampling layer
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Hello World of Deep Learning
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Mixed National Institute of Standards & Technology database of handwritten digits
60,000 training images
Normallized to 20x20 pixels with grayscale
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Different Methods with Error Rate
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Type Classifier Error rate (%)
Linear classifier Pairwise linear classifier 7.6

K-Nearest Neighbors K-NN with non-linear deformation 
(P2DHMDM) 0.52

Neural network 2-layer 784-800-10 1.6
Neural network 2-layer 784-800-10 0.7
Deep neural network 6-layer 784-2500-2000-1500-1000-500-10 0.35

Convolutional neural network Committee of 35 conv. net, 1-20-P-40-
P-150-10 0.23
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