
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2016
Doc 16 Neural Nets

Oct 18, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, October 18, 16

Neural Networks

2

All you really need to know for the moment is that the universe is a lot
more complicated than you might think, even if you start from a position
of thinking it’s pretty damn complicated in the first place.

--- Douglas Adams, Hitchhikers Guide to the Universe

Tuesday, October 18, 16

Example

3

Apples Oranges Total Cost

2 3 5

9 4 16

4 8 10.5

let w(a) = cost of apple
 n(a) = number of apples
 w(o) = cost of orange
 n(o) = number of oranges
 t = transaction fee

Total Cost = w(a)*n(a) + w(o)*n(o) + t

Find w(a) and w(o)

Tuesday, October 18, 16

4

Apples Oranges Total Cost Guess

2 3 5 6

9 4 16 14

4 8 10.5 13

w(a) - guess 1
w(o) - guess 1
t - guess 1

Apples Oranges Total Cost Guess

2 3 5 2.5

9 4 16 6.5

4 8 10.5 6

Too high in two cases

w(a) - guess 0.5
w(o) - guess 0.5
t - guess 0

Apples Oranges Total Cost Guess

2 3 5 4.5

9 4 16 10.5

4 8 10.5 9.75

Too low

w(a) - guess 0.75
w(o) - guess 0.75
t - guess 0.75

Too low

Tuesday, October 18, 16

Need

5

Measure of how far off guess is from data

Systematic way to change weights

Tuesday, October 18, 16

Loss Function

6

Measure of how the data differs from estimate

Linear case

Yi = data value
Yi_hat = computed value

Tuesday, October 18, 16

Activation Function

7

Function that we are trying to fit

In example linear function with two independent variables

f(x1,x2) = a*x1 + b*x2 + c

= w1*x1 + w2*x2 + b

w1, w1 are the weights

b is the bias

Tuesday, October 18, 16

Bias

8

Prejudice in favor of one thing

Positive values being for
Negative values being against

Consider x = 0 neutral input

Then if f is neutral function f(0) == 0

f(x1, x2) = w1*x1 + w2*x2 + b

f(0, 0) = b

So f has a bias

Tuesday, October 18, 16

9

x1

f(x)

x2 x3

Pick x1

Find the slope at f(x1) ie take derivative

Use slope to estimate where f(x) is zero = x2

Repeat process until f(xn) is really close to 0

Tuesday, October 18, 16

Gradient Descent

10

gradient is the derivative of multi-dimensional function

Tuesday, October 18, 16

Fundamentals of Deep Learning, Buduma, O’Reilly Media, Inc., Second Early Release

Systematic way to change weights

11

Take derivative of activation function get gradient

Use the slope in the x1 dimension to adjust w1

Use the slope in the x2 dimension to adjust w2

f(x1, x2) = w1*x1 + w2*x2 + b

Tuesday, October 18, 16

How far to go?

12

Tuesday, October 18, 16

Learning Rate

13

To avoid overshooting multiply the gradient by a factor - say 0.1

This is called the learning rate

Take derivative of activation function get gradient

Use the slope in the x1 dimension * learning rate to adjust w1

Use the slope in the x2 dimension * learning rate to adjust w2

Tuesday, October 18, 16

Terms

14

Loss Function

Activation Function

Learning Rate

Weights

Bias

Tuesday, October 18, 16

Basic Algorithm

15

f(x1, x2) = w1*x1 + w2*x2 + b

Select initial values for w1, w2, b

Take derivative of activation function get gradient
w1 = w1 + the slope in the x1 dimension * learning rate * Error
w2 = w2 + the slope in the x2 dimension * learning rate * Error
b = b + gradient * learning rate * Error

1. Compute loss function on data to find the error

2. Update w1, w2, b

Repeat 1 & 2 until error is acceptable

Tuesday, October 18, 16

Learning Rate

16

If too small then take too long for result to converge

If too large then algorithm will jump arround too much and not converge

Tuesday, October 18, 16

Basic Structure of Neuron

17

Tuesday, October 18, 16

Deep Learning, Gibson & Patterson, O’Reilly Media, Inc. , Early Release

Knet.jl

18

Deep learning framework

Developed at in Koç University in Turkey

Hides some complexity

Can use GPU

Define
activation (predict) function
loss function

Then train the data

Tuesday, October 18, 16

Linear Knet Example

19

using Knet

activation(w,x) = w[1]*x .+ w[2]

loss(w,x,y) = sumabs2(y - activation(w,x)) / size(y,2)

lossgradient = grad(loss) # grad computed gradient

function train(w, data; learning_rate=.1)
 for (x,y) in data
 dw = lossgradient(w, x, y)
 for i in 1:length(w)
 w[i] -= learning_rate * dw[i]
 end
 end
end

Tuesday, October 18, 16

20

x = rand(10)
y = 2 .* x .+ 3 #exact model so we know
x = x'
y = y'
w = [2.5,3.5]

for i in 1:20
 train(w,[(x,y)], learning_rate = 0.1)
 println(loss(w,x,y))
end

Loss value

First 0.34

Last 0.001

w:
 2.09855
 2.94161

Tuesday, October 18, 16

Varying Learning Rate

21

Learning rate 0.01 Loss value

First 0.43
Last 0.26

w:
 2.45
 3.29

Learning rate 1.0 Loss value

First 0.83
Last 21299.5

w:
 53.0
 129

Learning rate 0.1 Loss value
w:
 2.10
 2.94

First 0.34
Last 0.001

Tuesday, October 18, 16

Varying Starting Point

22

Learning rate 0.01
w = [0.0, 0.0]

Loss value

First 9.1
Last 0.005

w:
 1.76
 3.12

Learning rate 0.01
w = [-10.0, -10.0]

Loss value

First 208
Last 0.76

w:
-1.01
 4.56

Learning rate 0.01
w = [10.0, -10.0]

Loss value

First 52
Last 6.76

w:
10.9
 -1.81

Tuesday, October 18, 16

Neural Networks Parameters

23

Input weights

Learning Rate

Tuesday, October 18, 16

Linear Neurons - Perceptrons

24

Linear neurons even when combined have limited use

Need more types of neurons
Each type needs gradient function & loss function

Layers of neurons

Tuesday, October 18, 16

Types of Neurons/Activation Functions

25

Sigmoid

Tuesday, October 18, 16

Fundamentals of Deep Learning, Buduma, O’Reilly Media, Inc., Second Early Release

Tanh

26

Tuesday, October 18, 16

Fundamentals of Deep Learning, Buduma, O’Reilly Media, Inc., Second Early Release

Restricted Linear Unit (ReLU)

27

Tuesday, October 18, 16

Softmax

28

softmax_norm(x) = 1 ./(1 + exp(-(x - mean(x))/std(x)))

Recall from clustering

Often used as output neuron

Tuesday, October 18, 16

Loss functions

29

mean square log error
MSLE

Hinge loss
Binary classification

Logisitic loss

Tuesday, October 18, 16

Neural Networks Parameters

30

Input weights

Learning Rate

Loss function

Activation function

Tuesday, October 18, 16

Layers

31

Even with different types of neurons single neurons are not very useful

Create layers of neurons

Tuesday, October 18, 16

Deep Learning, Gibson & Patterson, O’Reilly Media, Inc. , Early Release

32

One neuron

Tuesday, October 18, 16

Forward Propagation

33

Input data goes to input layer
Each neuron passes its ouput to the next layer
Below is a fullly connected neural network

Tuesday, October 18, 16

Backpropagation

34

How to adjust weights for each neuron?

Adjust the weights of the last layer as before

Using these weights we can compute what the inputs to last layer should be

We can now use those estimates to adjust the previous layers weights

Tuesday, October 18, 16

Neural Networks Parameters

35

Input weights per neuron

Learning rate per neuron

Loss function per neuron

Activation function per neuron

Number of layers

Number of neurons per layer

How neurons are connected

Tuesday, October 18, 16

Overfitting

36

Tuesday, October 18, 16

Fundamentals of Deep Learning, Buduma, O’Reilly Media, Inc., Second Early Release

Hyperparameters

37

Things we can change to make neural networks train better

Learning Rate
Activation functions
Weight initalization strategies
Loss functions
Normalization
Layer size & number of layers

mini-batch size
Regularization
Momentum
Sparsity

Tuesday, October 18, 16

Work Flow

38

Tuesday, October 18, 16

Input

39

Need to map input into vector

Tuesday, October 18, 16

Fundamentals of Deep Learning, Buduma, O’Reilly Media, Inc., Second Early Release

Images & Scaling

40

Image of 32 pixels by 32 pixels with 3 color channels (RGB)

Fully connected neuron needs 32*32*3 = 3,072 weights

Image of 200 pixels by 200 pixels with 3 color channels (RGB)

Fully connected neuron needs 200*200*3 = 120,000 weights

Image researchers use up to 150 layers

Tuesday, October 18, 16

Deep Learning

41

More neurons than previous networks
More complex ways of connecting layers
Explosion of computing power to train
Automatic feature extraction

Unsupervised Pre-Trained Networks
Convolutional Neural Networks

Common for image Analysis
Recurrent Neural Networks

Time series analysis
Recursive Neural Networks

Some Deep Learning Networks

Tuesday, October 18, 16

Convolutional Neural Network

42

Convolutional Layer
3-D network of neurons
Only locally connected
Each 2-D slice in depth share same weight

Pooling Layer
Down-sampling layer

Tuesday, October 18, 16

https://en.wikipedia.org/wiki/Convolutional_neural_network

43

Tuesday, October 18, 16

Hello World of Deep Learning

44

Mixed National Institute of Standards & Technology database of handwritten digits
60,000 training images
Normallized to 20x20 pixels with grayscale

Tuesday, October 18, 16

Different Methods with Error Rate

45

Type Classifier Error rate (%)
Linear classifier Pairwise linear classifier 7.6

K-Nearest Neighbors K-NN with non-linear deformation
(P2DHMDM) 0.52

Neural network 2-layer 784-800-10 1.6
Neural network 2-layer 784-800-10 0.7
Deep neural network 6-layer 784-2500-2000-1500-1000-500-10 0.35

Convolutional neural network Committee of 35 conv. net, 1-20-P-40-
P-150-10 0.23

Tuesday, October 18, 16

https://en.wikipedia.org/wiki/MNIST_database

