CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2016

Doc 13 Generalized Linear Models
Oct 6, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, October 6, 16

Generalized Linear Models

Generalized linear regression to handle other cases (distributions)

Linear regression Logistic regression

Logistic regression Finite possible outcomes
Probit regression

Poisson regression

Thursday, October 6, 16

Generalized Linear Models

Julia GLM package use the function

glm(formula, data, family, link)

formula Y~X+Z

data Dataframe

family (predictor) Bernoulli(), Binomial(), Gamma(), Normal(), or Poisson()
link Function linking predictor and mean of distribution
Family Standard Link

Bernoulli LogitLink
Binomial LogitLink
Gamma InverseLink
Normal |dentityLink
Poisson LogLink

Thursday, October 6, 16

Julia glm, Im and fit
Im and glm are convenience methods for fit

Im(Y~X+Z,a_data_frame) calls
fit(LinearModel, Y~X+Z,a_data_frame)

glm(formula, data, family, link) calls
fit(GeneralizedLinearModel, formula, data, family, link)

Thursday, October 6, 16

Categorical Variable

Variable takes on one of limited, usually fixed possible values
Blood type of a person
Political party a person will vote for
State that one lives in

If only two possible values normally encoded as 1 & 0

Categorical variables need to handled differently in regression model

Thursday, October 6, 16

Logistic (Logit) Regression or Logit Model

Regression model where the dependent variable is categorical

Used to predict
If a patient has a disease based on age, sex, blood tests, etc
If a voter will vote Democratic or Republican

If a product will fail

Thursday, October 6, 16

Logit Model in Julia

Use
Family Binomial()
Link LogitLink()

glm(formula, dataframe, Binomial(), LogitLink())

Thursday, October 6, 16

Hours Studied & Passing Exam

When only two outcomes encoded 1 & O

Build model to predict given study time the
probability of passing

8

Pass

Hours

Thursday, October 6, 16
Example from https://en.wikipedia.org/wiki/Logistic_regression

using DataFrames

Generating the Model using GLM

using Distributions

hours =[0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00,
3.25, 3.50, 4.00, 4.25, 4.50, 4.75]
pass=1[0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,]

study data = DataFrame(Hours= hours, Pass = pass)

study_model = glim(Pass~Hours, study data, Binomial(), LogitLink())
show(study model)

Formula: Pass ~ 1 + Hours

Coefficients:

Estimate Std.Error z value Pr(>lzl)
(Intercept) -3.96352 1.78902 -2.21547 0.0267
Hours 1.4533 0.649233 2.23849 0.0252

Thursday, October 6, 16

Confidence Intervals

confint(study _model) confint works on linear models too
-7.46994 -0.457101 Intercept
0.180829 2.72578 Hours

Formula: Pass ~ 1 + Hours

Coefficients:

Estimate Std.Error z value Pr(>lzl)
(Intercept) -3.96352 1.78902 -2.21547 0.0267
Hours 1.4533 0.649233 2.23849 0.0252

Thursday, October 6, 16

Using Model to Predict

Not fitting data to a line
Fitting it to the logistic function

F(x)= 1/(1 + exp(Intercept + DependentVarEstimate*x)
=1/(1 + exp(-3.96352 + 1.4533*x)

Estimate Std.Error z value Pr(>lzl)
(Intercept) -3.96352 1.78902 -2.21547 0.0267
Hours 1.4533 0.049233 2.23849 0.0252

Thursday, October 6, 16

Generalizing the Function

probability(model, x) = 1/(1+exp(-(coef(model)[1]+coef(model)[2]*X)))

probability(study _model,4)

Hours Studied

How calculated

Probability of Passing

0.075

0.258

0.598

2
3
4

(study_model,4)

0.864

Thursday, October 6, 16

predict

Linear regression and Logistic regression are fitted to different equations
The Julia model knows which equation is to be used

GLM package function predict will fit the data

Hours Studied How calculated Probability of Passing
I 0.075
2 0.258
3 0.598
4 0.864

Thursday, October 6, 16

predict arguments

predict(study _model, [1.0 3.0])

predict computes
[1.0 3.0] * coef(study _model)

Then feeds the result into the proper fit (link) function

Since the first coefficient is the intercept the first value needs to be 1

Thursday, October 6, 16

Using DataFrames with predict

student = DataFrame(Hours = [3.0])
result_array = predict(study model, student)

result_array[1] == 0.598

Works with linear models too

Thursday, October 6, 16

Generating Tables

students = DataFrame(Hours =[1.0, 2.0, 3.0, 4.0])

result_array = predict(study _model, students)
result_array

[0.0751, 0.258, 0.598, 0.864]

Thursday, October 6, 16

Second Example - Admission to Grad School

Data from http://www.ats.ucla.edu/stat/data/binary.csv
Analysis using R: http://www.ats.ucla.edu/stat/r/dae/logit.htm

Given the data build a model of admissions

admit - dependent variable, 1 = admit

gre, gpa
rank - ranking of school student attended, 1= highest rank, 4 lowest

Row | admit | gre | gpa rank
1 0 380 | 3.61 | 3
2 1 660 | 3.67 | 3
3 1 300 | 4.0 1
4 1 640 | 3.19 | 4
5 0 520 | 2.93 | 4
6 1 /60 | 3.0 2

Thursday, October 6, 16
Data was generated. Not real data on admissions from UCLA

Summary of the Data

admit
Min

1st Qu.

Median
Mean

3rd Qu.

Max

0.0
0.0
0.0
0.3175
1.0
1.0

gre
Min

1st Qu.

Median
Mean

3rd Qu.

Max

220.0
520.0
580.0
587.7
060 .0
800.0

gpa
Min

1st Qu.

Median
Mean

3rd Qu.

Max

2.20
3.13
3.395
3.39
3.67
4.0

rank
Min

1st Qu.

Median
Mean

3rd Qu.

Max

1.0
2.0
2.0
2.485
3.0
4.0

Thursday, October 6, 16

rank - Categorical Variable

rank ony has four values

So needs to be handled differently - Use PooledDataArray

Thursday, October 6, 16

Pooling Data

Categorical data in arrays can be space inefficient

PooledDataArray
Republican 1 > Republican
Democrat 2 Democrat
Democrat 2 /;
Democrat 2
Republican 1
Republican 1

20

Thursday, October 6, 16

Pooling DataFrame Columns

Use pooll(dataframe, [Columns_to pool])

7 13 N 13) 13 7 (13 N 13

parties = ['Republican”, “Democrat”, “Democrat”, “Democrat”, “Republican”, “Republican’]
party df = DataFrame(Party = parties)

pooll(party df, [:Party])

21

Thursday, October 6, 16

Creating Admission Model

using DataFrames

using GLM

using Distributions

admit_data = readtable("admit_data.csv")

pooll(admit_data,[:rank])

admit_model = gim(admit~gre + gpa + rank, admit_data, Binomial(),LogitLink())

22

Thursday, October 6, 16

The Model

show(admit_model)

Formula: admit ~ 1 + gre + gpa + rank

Coefficients:
Estimate Std.Error 2z value Pr(>l1zl)
(Intercept) -3.98998 1.13982 -3.50052 0.0005

gre 0.00226443 0.00109389 2.07007/ 0.0384
gpa 0.804037 0.331783 2.42338 0.0154
rank: 2 -0.675443 0.31648 -2.13423 0.0328
rank: 3 -1.3402 0.345284 -3.88146 0.0001
rank: 4 -1.55146 0.417804 -3.71337 0.0002

23

Thursday, October 6, 16

Confidence Intervals

confint(admit_model)

Estimat
-0.22399 -1.75596 (Intercept) -3.98998
0.000120448 0.0044084 gre 0.00226443
0.153755 1.45432 gpa 0.804037
-1.29573 -0.0551526 rank: 2 -0.675443
-2.01695 -0.063461 rank: 3 -1.3402
-2.37034 -Q.732582 rank: 4 -1.55146

24

Thursday, October 6, 16

Using the Model

sample_student = DataFrame(gre=588,gpa=3.39,rank=2)
pooll(sample_student,[:rank])

result_array = predict(admit_model,sample student)

result_array[1] = 0.352

25

Thursday, October 6, 16

Predicting Multiple Data

average_student = DataFrame(gre=fill(588,4), gpa=fill(3.39,4), rank=1:4)
pooll(average student,[.rank])

show(head(average_student))

Row | gre | gpa rank
1 588 | 3.39 | 1
2 588 | 3.39 | 2
3 588 | 3.39 | 3
4 588 | 3.39 | 4

26

Thursday, October 6, 16

Predicting Multiple Data

predict(admit_model,average_student)

Result

0.516/91
0.352458
0.218742
0.1847383

Row | gre | gpa rank
1 588 | 3.39 | 1
2 588 | 3.39 | 2
3 588 | 3.39 | 3
4 588 | 3.39 | 4

27

Thursday, October 6, 16

