CS 696 Intro to Big Data: Tools and Methods Fall Semester, 2016 Doc 13 Generalized Linear Models Oct 6, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/openpub/) license defines the copyright on this document.

Generalized Linear Models

Generalized linear regression to handle other cases (distributions)

Linear regression
Logistic regression
Probit regression
Poisson regression

. . .

Logistic regression
Finite possible outcomes

Generalized Linear Models

Julia GLM package use the function

glm(formula, data, family, link)

formula Y~X+Z

data Dataframe

family (predictor) Bernoulli(), Binomial(), Gamma(), Normal(), or Poisson()

link Function linking predictor and mean of distribution

Family Standard Link

Bernoulli LogitLink

Binomial LogitLink

Gamma InverseLink

Normal IdentityLink

Poisson LogLink

Julia glm, Im and fit

Im and glm are convenience methods for fit

```
Im(Y~X+Z,a_data_frame) calls
  fit(LinearModel, Y~X+Z,a_data_frame)
```

glm(formula, data, family, link) calls fit(GeneralizedLinearModel, formula, data, family, link)

Categorical Variable

Variable takes on one of limited, usually fixed possible values

Blood type of a person

Political party a person will vote for

State that one lives in

If only two possible values normally encoded as 1 & 0

Categorical variables need to handled differently in regression model

Logistic (Logit) Regression or Logit Model

Regression model where the dependent variable is categorical

Used to predict

If a patient has a disease based on age, sex, blood tests, etc

If a voter will vote Democratic or Republican

If a product will fail

Logit Model in Julia

```
Use
Family Binomial()
Link LogitLink()
```

glm(formula, dataframe, Binomial(), LogitLink())

Hours Studied & Passing Exam

When only two outcomes encoded 1 & 0

Build model to predict given study time the probability of passing

Pass	Hours

Generating the Model

using DataFrames using GLM using Distributions

```
hours = [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75]

pass = [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1]

study_data = DataFrame(Hours= hours, Pass = pass)

study_model = glm(Pass~Hours, study_data, Binomial(), LogitLink())
show(study_model)
```

Formula: Pass ~ 1 + Hours

Coefficients:

Estimate Std.Error z value Pr(>|z|) (Intercept) -3.96352 1.78902 -2.21547 0.0267 Hours 1.4533 0.649233 2.23849 0.0252

Confidence Intervals

confint(study_model)

confint works on linear models too

-7.46994 -0.457101 0.180829 2.72578

Intercept Hours

Formula: Pass ~ 1 + Hours

Coefficients:

Estimate Std.Error z value Pr(>|z|)

(Intercept) -3.96352 1.78902 -2.21547 0.0267

Hours 1.4533 0.649233 2.23849 0.0252

Using Model to Predict

Not fitting data to a line Fitting it to the logistic function

```
F(x) = 1/(1 + exp(Intercept + DependentVarEstimate*x)
= 1/(1 + exp(-3.96352 + 1.4533*x)
```

```
Estimate Std.Error z value Pr(>|z|)
(Intercept) -3.96352 1.78902 -2.21547 0.0267
Hours 1.4533 0.649233 2.23849 0.0252
```

Generalizing the Function

probability(model, x) = $1/(1+\exp(-(\operatorname{coef}(\operatorname{model})[1]+\operatorname{coef}(\operatorname{model})[2]*x)))$

probability(study_model,4)

Hours Studied	How calculated	Probability of Passing
I		0.075
2		0.258
3		0.598
4	(study_model,4)	0.864

predict

Linear regression and Logistic regression are fitted to different equations

The Julia model knows which equation is to be used

GLM package function **predict** will fit the data

Hours Studied	How calculated	Probability of Passing
I		0.075
2		0.258
3		0.598
4		0.864

predict arguments

```
predict(study_model, [1.0 3.0])
```

```
predict computes
[1.0 3.0] * coef(study_model)
```

Then feeds the result into the proper fit (link) function

Since the first coefficient is the intercept the first value needs to be 1

Using DataFrames with predict

```
student = DataFrame(Hours = [3.0])
result_array = predict(study_model, student)
result_array[1] == 0.598
```

Works with linear models too

Generating Tables

```
students = DataFrame(Hours = [1.0, 2.0, 3.0, 4.0])
result_array = predict(study_model, students)
result_array
```

[0.0751, 0.258, 0.598, 0.864]

Second Example - Admission to Grad School

Data from http://www.ats.ucla.edu/stat/data/binary.csv

Analysis using R: http://www.ats.ucla.edu/stat/r/dae/logit.htm

Given the data build a model of admissions

```
admit - dependent variable, 1 = admit
gre, gpa
rank - ranking of school student attended, 1= highest rank, 4 lowest
```

	Row		admit		gre		gpa	1	rank	1
-		+		+		1		+		\dashv
	1		0		380		3.61		3	
	2		1		660		3.67		3	
	3		1		800		4.0		1	
	4		1		640		3.19		4	
	5		0		520		2.93		4	
	6		1		760		3.0	\mathbf{I}_{Γ}	₇ 2	I

Thursday, October 6, 16

Summary of the Data

admit		gre		gpa		rank	
Min	0.0	Min	220.0	Min	2.26	Min	1.0
1st Qu.	0.0	1st Qu.	520.0	1st Qu.	3.13	1st Qu.	2.0
Median	0.0	Median	580.0	Median	3.395	Median	2.0
Mean	0.3175	Mean	587.7	Mean	3.39	Mean	2.485
3rd Qu.	1.0	3rd Qu.	660.0	3rd Qu.	3.67	3rd Qu.	3.0
Max	1.0	Max	800.0	Max	4.0	Max	4.0

rank - Categorical Variable

rank ony has four values

So needs to be handled differently - Use PooledDataArray

Pooling Data

Categorical data in arrays can be space inefficient

Republican

Democrat

Democrat

Democrat

Republican

Republican

PooledDataArray

2

1

1

Pooling DataFrame Columns

Use pool!(dataframe, [Columns_to_pool])

```
parties = ["Republican", "Democrat", "Democrat", "Democrat", "Republican", "Republican"]
party_df = DataFrame(Party = parties)
pool!(party_df, [:Party])
```

Creating Admission Model

```
using GLM
using Distributions

admit_data = readtable("admit_data.csv")

pool!(admit_data,[:rank])

admit_model = glm(admit~gre + gpa + rank, admit_data, Binomial(),LogitLink())
```

The Model

```
show(admit_model)
```

```
Formula: admit ~ 1 + gre + gpa + rank
```

Coefficients:

	Estimate	Std.Error	z value	Pr(> z)
(Intercept)	-3.98998	1.13982	-3.50052	0.0005
gre	0.00226443	0.00109389	2.07007	0.0384
gpa	0.804037	0.331783	2.42338	0.0154
rank: 2	-0.675443	0.31648	-2.13423	0.0328
rank: 3	-1.3402	0.345284	-3.88146	0.0001
rank: 4	-1.55146	0.417804	-3.71337	0.0002

Confidence Intervals

confint(admit_model)

			Estimat
-6.22399	-1.75596	(Intercept)	-3.98998
0.000120448	0.0044084	gre	0.00226443
0.153755	1.45432	gpa	0.804037
-1.29573	-0.0551526	rank: 2	-0.675443
-2.01695	-0.663461	rank: 3	-1.3402
-2.37034	-0.732582	rank: 4	-1.55146

Using the Model

```
sample_student = DataFrame(gre=588,gpa=3.39,rank=2)
pool!(sample_student,[:rank])
result_array = predict(admit_model,sample_student)
result_array[1] = 0.352
```

Predicting Multiple Data

```
average_student = DataFrame(gre=fill(588,4), gpa=fill(3.39,4), rank=1:4) pool!(average_student,[:rank])
```

show(head(average_student))

	Row	_		_	gpa	_		
Г		Т						7
	1		588		3.39		1	
	2		588		3.39		2	
	3		588		3.39		3	
	4		588		3.39		4	

Predicting Multiple Data

predict(admit_model,average_student)

Result

		Row		gre		gpa		rank	 -
	Γ		Τ		Т		Τ		٦
0.516791		1		588		3.39		1	
0.352458		2	l	588		3.39		2	
0.218742	I	3		588		3.39	ı	3	
0.184783		4		588	I	3.39	ı	4	