CS 696 Intro to Big Data: Tools and Methods Fall Semester, 2016 Doc 11 Regression Oct 4, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Machine Learning

Supervised

Unsupervised

Reinforcement learning

Classification

Regression

Clustering

Density Estimation

Dimensionality Reduction

Supervised learning

Artificial neural network **Bayesian statistics Bayesian network** Gaussian process regression Inductive logic programming Learning Vector Quantization Logistic Model Tree Nearest Neighbor Algorithm **Random Forests** Ordinal classification ANOVA Linear classifiers Fisher's linear discriminant Linear regression Logistic regression Multinomial logistic regression Naive Bayes classifier

Quadratic classifiers k-nearest neighbor Boosting Decision trees Random forests Bayesian networks Naive Bayes Hidden Markov models

Unsupervised learning

Expectation-maximization algorithm Vector Quantization Generative topographic map Information bottleneck method Artificial neural networks

Hierarchical clustering Single-linkage clustering Conceptual clustering Cluster analysis[edit] K-means algorithm Fuzzy clustering DBSCAN OPTICS algorithm

Outlier Detection Local Outlier Factor

Other

Reinforcement learning Temporal difference learning Q-learning Learning Automata SARSA

Deep learning Deep belief networks Deep Boltzmann machines Deep Convolutional neural networks Deep Recurrent neural networks Hierarchical temporal memory

Machine Learning & Patterns

Machine learning algorithms

Detect patterns Generate models based on those patterns

Feed a neural network pictures of cats Neural net can identify cats Can automate finding cat photo on internet

Drive a car with neural network "watching" You actions Videos of surroundings

Neural net can identify patterns & start to drive

Limits of Pattern Matching 1 * (4 + 1) = 52*(5+1) = 12+4 = 53*(6+1) = 218 * (11 + 1) = 96 2 + 5 = 120 + 1 + 4 = 53 + 6 = 215 + 2 + 5 = 1212 + 3 + 6 = 2121 + 8 + 11 = 408 + 1 = ?

No Free Lunch Theorems

David Wolpert

For every pattern a machine learning algorithm is good at learning, there's another pattern that same learner would be terrible at picking up

No Free Lunch

CV Dazzle and OpenCV using 4 Haar Cascades (default, alt, alt2, and alt_tree)

II Adam Harvey / alignifiets.com

Models

Machine Learning algorithms produce models

Models allow predictions or offer insights

Examples

. . .

Decreasing latency by X increases Amazon's daily revenue by Y

White males without college degrees favor Trump by X% Females favor Clinton by Y%

Models Approximate Reality

World is flat

World is a sphere

World is an oblate ellipsoid

Does the model provide useful predictions/insights

Under what condidtions is the model useful

What are the estimates of the model's error

Multiple Factors in Model

Regression

Regression

Measure of relation between mean of one variable (dependent) on

one or more other variables (independent)

In chapter 11 of Julia for Data Science

Download the Jupyter notebook before reading

https://technicspub.com/analytics/ https://app.box.com/v/codefiles

Overview

Linear regression

Multiple linear regression

Generalized linear regression (model)

Is the dependent variable related to the independent variable

Generating the model

Error in the model

Effect of independent variables

Actual relation (assumed)

y = a + bx

Compute linear line that fits the data best

^y = a + bx + e

e - error or residual

Goal is to minimize residual overall

Tuesday, October 4, 16

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Are They Related?

Covariance

If x & y are related then they should vary from their means in a similar way

$$dx_i = x_i - \overline{x}$$

 $dy_i = y_i - \overline{y}$

Values near zero indicate no relation

positive values - positive relation

$$\operatorname{cov}(X,Y) = \frac{1}{n} \sum_{i=1}^{n} dx_i dy_i$$

negative values - negative relation

In Julia use function cov

Effects of Scale

Cost USD	Pounds	Grams	
9	3	1357.8	
24	7	3168.2	
38	10	4526.0	

cov(pounds,Cost USD) == 50.8

cov(grams, Cost USD) == 23007

cov(grams, Cost INR) == 1,528,308.996

1 Pound = 452.6 grams

Changing the scale of units Does not change the relationship Does change magnitude of Covariance

Makes covariance hard to evaluate

Units

$$dx_i = x_i - \overline{x}$$
 Lbs
 $dy_i = y_i - \overline{y}$ USD

$$\operatorname{cov}(X,Y) = \frac{1}{n} \sum_{i=1}^{n} dx_{i} dy_{i}$$

cov(pounds,Cost USD) == 50.8 lbs*USD

cov(grams, Cost USD) == 23007 grams*USD

Cost USD	Pounds	Grams	
9	3	1357.8	
24	7	3168.2	
38	10	4526.0	

Normalizing Data

Convert data to a common scale

Example - divide by maximum value

Cost USD	Pounds	Grams	
9	3	1357.8	
24	7	3168.2	
38	10	4526.0	

Cost	Amount
0.237	0.3
0.632	0.7
I.00	Ι

cov(Cost,Amount) == 0.134 (unitless)

Pearson's Correlation - r

$$r = \frac{cov(X,Y)}{\sigma_x \sigma_y}$$

Julia function

cor

Normalized Covariance

Unitless

Range -1 to 1

1 = maximumly related

-1 - maximumly inversely related

0 - not related

Pearson's Correlation - r

Cost USD	Pounds	Grams	
9	3	1357.8	
24	7	3168.2	
38	10	4526.0	

cor(Cost USD,pounds) == 0.998 cor(Cost USD,grams) == 0.998

Pearson's Correlation r Value Examples

Regression Line

Pearson's Co cor(x,y) == 0.992

What the line that minimizes the amount of residuals

Ordinary least squares

$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Standard way to fit line to data

$$b = \frac{cov(X,Y)}{var(X)}$$

$$a = \overline{y} - b\overline{x}$$

GLM.jl Package

Linear models (Im) & Generalized linear models (gIm)

Pkg.add("GLM") using GLM

Im(independentVars,dataframe) returns linear model fitting the data

glm(independentVars,dataframe,distribution, link)

fit() called by glm and lm to produce model

```
residuals(model)
coef(model) returns coefficients of fitted line
deviance(model)
stderr(model)
predict(model) returns predicted values of dependent variable
r2(model)
```

Example - Some Fake Data

using DataFrames using Gadfly using GLM using Distributions

#Adds random amount to value from distribution "dist" #Amount added is less than limit

```
function jitter(dist,value,limit)
  value + (rand(dist,1)[1] * 2 * limit ) - limit
end
```

 $f(x) = 2^{*}x + 3$ x = rand(50) * 10 y = map(z -> jitter(Normal(),f(z), 0.4), x)

Example - Are X & Y related linearly?

Pearson's Co cor(x,y) == 0.992

near_exact_data = DataFrame(X=x,Y=y)
plot(near_exact_data,x="X",y="Y",Geom.point,
 Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Data"))

Fitting the Data

```
near_exact_model = Im(Y~X, near_exact_data)
show(near_exact_model)
```

```
Formula: Y \sim 1 + X
```

Coefficients:

	Estimate	Std.Error	t value	Pr(>ltl)
(Intercept)	2.94384	0.188246	15.6382	<1e-19
Х	1.91493	0.0344778	55.5411	<1e-44

Source

 $f(x) = 2^*x + 3$

Model

fitted_f(x) = $1.91493^*x + 2.94384$

What is t?

Estimate Std.Error t value Pr(>|t|) (Intercept) 2.94384 0.188246 15.6382 <1e-19 X 1.91493 0.0344778 55.5411 <1e-44

From Student's T-test

Used when do not know the population parmeters

When population in know use z value

Used to determine if should accept the regression line

Use Pr(>|t|)

Examples

X & Y both random, no relation cor(x,y) == 0.0254

Estimate Std.Error t value Pr(>|t|) (Intercept) 10.8038 0.942533 11.4625 <1e-22 X 0.0270376 0.0756465 0.35742 0.7212

$$Y = X$$
 cor(x,y) == 1.0

Estimate Std.Error t value Pr(>|t|) (Intercept) 2.00972e-15 1.67129e-16 12.025 <1e-24 X 1.0 1.34135e-17 7.45515e16 <1e-99

Regression Line

Regression Equation

fitted_coef = coef(near_exact_model)
fitted_f(x) = fitted_coef[2]*x + fitted_coef[1]

Residuals

near_exact_data[:Residual] = residuals(near_exact_model)

plot(layer(near_exact_data,x="X",y="Residual",Geom.point),
 layer(x-> 0, 0,10),
 Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Residuals"))

Coefficient of Determination R²

$$R^{2} = 1 - \frac{var(\varepsilon)}{var(Y)}$$
 e = residuals
Y = observed data

Measure of how much the independent variable explains the variance of the data

r2(near_exact_model) == 0.985

So one independent variable x contributes 98.5% of the variation in the data

Simple Regression and R²

If only one independent variable

 $R^2 = r^2$ (Pearson's Correlation squared)

In example

Pearson's Co cor(x,y) == 0.992

r2(near_exact_model) == 0.985

 $0.992^2 == 0.984$

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

cor(x,y) == 0.552

Coefficients:

	Estimate	Std.Error	t value	Pr(>ltl)
(Intercept)	-8.12406	2.83688	-2.86373	0.0046
Х	2.28285	0.24535	9.30447	<1e-16

fitted_
$$f(x) = 2.28*x - 8.12$$

$$f(x) = 2^*x + 3$$

Residuals

 $R^2 == 0.304$

Why Intercept So Off?

fitted_f(x) = $2.28^*x - 8.12$

 $f(x) = 2^*x + 3$

Coefficients: Estimate Std.Error t value Pr(>|t|) (Intercept) -8.12406 2.83688 -2.86373 0.0046 X 2.28285 0.24535 9.30447 <1e-16

Multiple Linear Regression

Using multiple independent varibles

Amazon's daily revenue depends on

Latency

Price

Steps needed to order

Page layout

Relevant suggestions

Search results

Font sizes

Color

Shipping costs

Two Independent Variable Example

 $f(x, z) = 2^*x - 3^*z + 3$

x = rand(200) * 20 z = rand(200) * 20

randomized_f(x,z) = jitter(Normal(),2*x, 1) - jitter(Normal(),3*z,0.5) + 3

Exact Data

Fake Data

 $y = map((x,z) \rightarrow randomized_f(x,z),x,z)$

```
two_data = DataFrame(X=x,Z=z,Y=y)
plot(two_data,x="X",y="Y",Geom.point,
            Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Data, X & Y"))
plot(two_data,x="Z",y="Y",Geom.point,
            Guide.XLabel("Z"),Guide.YLabel("Y"),Guide.Title("Data, Z & Y"))
```

cor(x,exact_y) == 0.519 cor(z,exact_y) == -0.825 cor(x,y) = 0.519cor(z,y) = -0.819

The Model

```
fitted_coef = coef(two_model)
fitted_f(x,z) = fitted_coef[3]*z + fitted_coef[2]*x + fitted_coef[1]
= -3.004*z + 2.025*x + 2.1751
```

```
f(x, z) = 2^*x - 3^*z + 3
```

R² - Coefficient of Multiple Determination

When have multiple independent variables R² has new name

Adding an other independent variable

Contributes to explain dependent variable

R² increases

Has nothing to do with dependent variable

R² increases

Adjusted R²

Modified version of R^2

Adding new independent variable only increases R² more that expected by chance

adjr2(two_model)