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Machine Learning
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Supervised

Unsupervised

Reinforcement learning

Classification

Regression

Clustering

Density Estimation

Dimensionality Reduction
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Supervised learning
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Artificial neural network
Bayesian statistics
Bayesian network
Gaussian process regression
Inductive logic programming
Learning Vector Quantization
Logistic Model Tree
Nearest Neighbor Algorithm
Random Forests
Ordinal classification
ANOVA
Linear classifiers
Fisher's linear discriminant
Linear regression
Logistic regression
Multinomial logistic regression
Naive Bayes classifier

Quadratic classifiers
k-nearest neighbor
Boosting
Decision trees
Random forests
Bayesian networks
Naive Bayes
Hidden Markov models
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Unsupervised learning
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Expectation-maximization algorithm
Vector Quantization
Generative topographic map
Information bottleneck method
Artificial neural networks

Hierarchical clustering
Single-linkage clustering
Conceptual clustering
Cluster analysis[edit]
K-means algorithm
Fuzzy clustering
DBSCAN
OPTICS algorithm

Outlier Detection
Local Outlier Factor
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Other
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Reinforcement learning
Temporal difference learning
Q-learning
Learning Automata
SARSA

Deep learning
Deep belief networks
Deep Boltzmann machines
Deep Convolutional neural networks
Deep Recurrent neural networks
Hierarchical temporal memory
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Machine Learning & Patterns
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Machine learning algorithms 
Detect patterns
Generate models based on those patterns

Feed a neural network pictures of cats
Neural net can identify cats
Can automate finding cat photo on internet

Drive a car with neural network “watching” 
You actions
Videos of surroundings 

Neural net can identify patterns & start to drive 
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Limits of Pattern Matching
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1 * (4 + 1) = 5

2 * (5 + 1) = 12

3 * (6 + 1) = 21

8 * (11 + 1) = 96

0 + 1 + 4 = 5

5 + 2 + 5 = 12

12 + 3 + 6 = 21

21 + 8 + 11 = 40
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http://nautil.us/blog/the-fundamental-limits-of-machine-learning



No Free Lunch Theorems
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David Wolpert

For every pattern a machine learning algorithm is good at 
learning, there’s another pattern that same learner would be 
terrible at picking up
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No Free Lunch
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Models
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Machine Learning algorithms produce models

Models allow predictions or offer insights

Examples

Decreasing latency by X increases Amazon’s daily revenue by Y 

White males without college degrees favor Trump by X%
Females favor Clinton by Y%
...
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Models Approximate Reality
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World is flat

World is a sphere

World is an oblate ellipsoid

Does the model provide useful predictions/insights

Under what condidtions is the model useful

What are the estimates of the model’s error
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Multiple Factors in Model
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Amazon’s daily revenue depends on
Latency
Price
Steps needed to order
Page layout
Relevant suggestions
Search results
Font sizes
Color
Shipping costs

Some factors will be more important

Stochastic in nature

Independent variables
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Regression
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Regression
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Measure of relation between mean of one variable (dependent) on 

one or more other variables (independent)

In chapter 11 of Julia for Data Science

Download the Jupyter notebook before reading

https://technicspub.com/analytics/
https://app.box.com/v/codefiles
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Overview
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Linear regression

Multiple linear regression

Generalized linear regression (model)

Is the dependent variable related to the independent variable

Generating the model

Error in the model

Effect of independent variables
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Linear Regression
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f(x) = 2x + 3

y = 2x + 3

Model

y = 2x + 3

Independent
Variable

Dependent
Variable
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Linear Regression
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Compute linear line that fits the
data best

ˆy = a + bx + e

e - error or residual

y = a + bx

Actual relation (assumed)

Goal is to minimize residual overall
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http://xkcd.com/1725/



Are They Related?
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Covariance 
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If x & y are related then they should 
vary from their means in a similar way

Values near zero indicate no relation

positive values - positive relation

In Julia use function
cov

negative values - negative relation 
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Effects of Scale
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Cost USD Pounds Grams

9 3 1357.8

24 7 3168.2

38 10 4526.0

1 Pound = 452.6 grams 

cov(pounds,Cost USD) == 50.8

cov(grams, Cost USD) == 23007

Changing the scale of units
Does not change the relationship
Does change magnitude of Covariance

Makes covariance hard to evaluate

cov(grams, Cost INR) == 1,528,308.996
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Units

23

Cost USD Pounds Grams

9 3 1357.8

24 7 3168.2

38 10 4526.0

Lbs

USD

cov(pounds,Cost USD) == 50.8 lbs*USD

cov(grams, Cost USD) == 23007 grams*USD
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Normalizing Data
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Convert data to a common scale

Example - divide by maximum value

Cost USD Pounds Grams

9 3 1357.8

24 7 3168.2

38 10 4526.0

Cost Amount

0.237 0.3

0.632 0.7

1.00 1

cov(Cost,Amount) == 0.134 (unitless)
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Pearson’s Correlation - r
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Normalized Covariance

Unitless

Range -1 to 1

1 = maximumly related

-1 - maximumly inversely related

0 - not related

Julia function

cor
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Pearson’s Correlation - r

26

Cost USD Pounds Grams

9 3 1357.8

24 7 3168.2

38 10 4526.0

cor(Cost USD,pounds) == 0.998
cor(Cost USD,grams)  == 0.998
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Pearson’s Correlation r Value Examples
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https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient



Regression Line
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Pearson’s Co
cor(x,y) == 0.992

What the line that minimizes the amount 
of residuals
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Ordinary least squares
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Standard way to fit line to data
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GLM.jl Package
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Linear models (lm) & Generalized linear models (glm)

Pkg.add("GLM")
using GLM

lm(independentVars,dataframe) returns linear model fitting the data

glm(independentVars,dataframe,distribution, link)

fit() called by glm and lm to produce model

residuals(model)   
coef(model)    returns coefficients of fitted line
deviance(model)
stderr(model)
predict(model)   returns predicted values of dependent variable
r2(model)
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Example - Some Fake Data
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using DataFrames
using Gadfly
using GLM
using Distributions

#Adds random amount to value from distribution “dist”
#Amount added is less than limit

function jitter(dist,value,limit)
  value + (rand(dist,1)[1] * 2 * limit ) - limit
end

f(x) = 2*x + 3

x = rand(50) * 10

y = map(z -> jitter(Normal(),f(z), 0.4), x)
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Example - Are X & Y related linearly?
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Pearson’s Co
cor(x,y) == 0.992

near_exact_data = DataFrame(X=x,Y=y)
plot(near_exact_data,x="X",y="Y",Geom.point,
  Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Data"))
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Fitting the Data
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near_exact_model = lm(Y~X, near_exact_data)
show(near_exact_model)

Formula: Y ~ 1 + X

Coefficients:
             Estimate Std.Error t value Pr(>|t|)
(Intercept)   2.94384  0.188246 15.6382   <1e-19
X             1.91493 0.0344778 55.5411   <1e-44

Source
f(x) = 2*x + 3

Model
fitted_f(x) = 1.91493*x + 2.94384
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What is t?

34

             Estimate Std.Error t value Pr(>|t|)
(Intercept)   2.94384  0.188246 15.6382   <1e-19
X             1.91493 0.0344778 55.5411   <1e-44

From Student’s T-test
Used when do not know the population parmeters

When population in know use z value

Used to determine if should accept the regression line

Use Pr(>|t|)
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Examples
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              Estimate Std.Error t value Pr(>|t|)
(Intercept)    10.8038  0.942533 11.4625   <1e-22
X            0.0270376 0.0756465 0.35742   0.7212

X & Y both random, no relation

                Estimate   Std.Error    t value Pr(>|t|)
(Intercept)  2.00972e-15 1.67129e-16     12.025   <1e-24
X                    1.0 1.34135e-17 7.45515e16   <1e-99

Y = X

cor(x,y) == 0.0254

cor(x,y) == 1.0
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Regression Line
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fitted_f(x) = 1.91493*x + 2.94384
plot(layer(near_exact_data,x="X",y="Y",Geom.point),
      layer(fitted_f,0,10),
      Guide.XLabel("X"),Guide.YLabel("Y"))
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Regression Equation
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fitted_coef = coef(near_exact_model)
fitted_f(x) = fitted_coef[2]*x + fitted_coef[1]
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Residuals
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near_exact_data[:Residual] = residuals(near_exact_model)

plot(layer(near_exact_data,x="X",y="Residual",Geom.point),
     layer(x-> 0, 0,10),
    Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Residuals"))
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Coefficient of Determination R2
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e = residuals

Y = observed data

Measure of how much the independent variable explains the variance of the data

r2(near_exact_model) == 0.985

So one independent variable x contributes 98.5% of the variation in the data
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Simple Regression and R2
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If only one independent variable

R2 = r2     (Pearson’s Correlation squared)

Pearson’s Co
cor(x,y) == 0.992

In example

r2(near_exact_model) == 0.985

0.992^2 == 0.984
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http://xkcd.com/1725/



Second Example

42

f(x) = 2*x + 3
x = rand(200) * 20
y = map(z -> jitter(Normal(),f(z), 10),x)

cor(x,y) == 0.552

Tuesday, October 4, 16



Regression line
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Coefficients:
             Estimate Std.Error  t value Pr(>|t|)
(Intercept)  -8.12406   2.83688 -2.86373   0.0046
X             2.28285   0.24535  9.30447   <1e-16

f(x) = 2*x + 3

fitted_f(x) = 2.28*x - 8.12
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Residuals
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R2 == 0.304
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Why Intercept So Off?
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f(x) = 2*x + 3

fitted_f(x) = 2.28*x - 8.12

Coefficients:
             Estimate Std.Error  t value Pr(>|t|)
(Intercept)  -8.12406   2.83688 -2.86373   0.0046
X             2.28285   0.24535  9.30447   <1e-16
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Multiple Linear Regression
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Amazon’s daily revenue depends on
Latency
Price
Steps needed to order
Page layout
Relevant suggestions
Search results
Font sizes
Color
Shipping costs

Using multiple independent varibles
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Two Independent Variable Example
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f(x, z) = 2*x - 3*z + 3

x = rand(200) * 20
z = rand(200) * 20

randomized_f(x,z) = jitter(Normal(),2*x, 1) - jitter(Normal(),3*z,0.5) + 3

Tuesday, October 4, 16



Exact Data
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exact_y = map((x,z) -> f(x,z),x,z)
exact_data = DataFrame(X=x,Z=z,Y=exact_y)
plot(exact_data,x="X",y="Y",Geom.point,
    Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Exact Data, X & Y"))
plot(exact_data,x="Z",y="Y",Geom.point,
    Guide.XLabel("Z"),Guide.YLabel("Y"),Guide.Title("Exact Data, Z & Y"))
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Fake Data
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y = map((x,z) -> randomized_f(x,z),x,z)

two_data = DataFrame(X=x,Z=z,Y=y)
plot(two_data,x="X",y="Y",Geom.point,
  Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Data, X & Y"))
plot(two_data,x="Z",y="Y",Geom.point,
  Guide.XLabel("Z"),Guide.YLabel("Y"),Guide.Title("Data, Z & Y"))
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cor(x,exact_y) == 0.519
cor(z,exact_y) == -0.825

cor(x,y) = 0.519
cor(z,y) = -0.819
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The Model
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two_model = lm(Y~X + Z,two_data)
show(two_model)

Formula: Y ~ 1 + X + Z

Coefficients:
             Estimate Std.Error  t value Pr(>|t|)
(Intercept)    2.1751  0.431312  5.04299    <1e-5
X             2.02513 0.0288004   70.316   <1e-99
Z            -3.00437 0.0285496 -105.233   <1e-99

fitted_coef = coef(two_model)
fitted_f(x,z) = fitted_coef[3]*z + fitted_coef[2]*x + fitted_coef[1]

   = -3.004*z + 2.025*x + 2.1751

f(x, z) = 2*x - 3*z + 3
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R2 - Coefficient of Multiple Determination
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When have multiple independent variables R2 has new name

Adding an other independent variable

Contributes to explain dependent variable

R2 increases

Has nothing to do with dependent variable

R2 increases
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Adjusted R2 
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Modified version of R2 

Adding new independent variable only increases R2  more that expected by chance

adjr2(two_model)
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