CS 696 Intro to Big Data: Tools and Methods Fall Semester, 2016
 Doc 11 Regression
 Oct 4, 2016

Copyright ©, All rights reserved. 2016 SDSU \& Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Machine Learning

Supervised
Unsupervised
Reinforcement learning
Clustering
Density Estimation
Dimensionality Reduction

Supervised learning

Artificial neural network
Bayesian statistics
Bayesian network
Gaussian process regression
Inductive logic programming
Learning Vector Quantization
Logistic Model Tree
Nearest Neighbor Algorithm
Random Forests
Ordinal classification
ANOVA
Linear classifiers
Fisher's linear discriminant
Linear regression
Logistic regression
Multinomial logistic regression
Naive Bayes classifier

Quadratic classifiers
k-nearest neighbor
Boosting
Decision trees
Random forests
Bayesian networks
Naive Bayes
Hidden Markov models

Unsupervised learning

Expectation-maximization algorithm
Vector Quantization
Generative topographic map
Information bottleneck method
Artificial neural networks

Hierarchical clustering
Single-linkage clustering
Conceptual clustering
Cluster analysis[edit]
K-means algorithm
Fuzzy clustering
DBSCAN
OPTICS algorithm

Outlier Detection
Local Outlier Factor

Other

Reinforcement learning
Temporal difference learning
Q-learning
Learning Automata
SARSA

Deep learning
Deep belief networks
Deep Boltzmann machines
Deep Convolutional neural networks
Deep Recurrent neural networks
Hierarchical temporal memory

Machine Learning \& Patterns

Machine learning algorithms
Detect patterns
Generate models based on those patterns

Feed a neural network pictures of cats
Neural net can identify cats
Can automate finding cat photo on internet

Drive a car with neural network "watching"
You actions
Videos of surroundings

Neural net can identify patterns \& start to drive

Limits of Pattern Matching

$$
2 *(5+1)=12
$$

$$
3^{*}(6+1)=21
$$

$$
8 *(11+1)=96
$$

$$
0+1+4=5
$$

$$
5+2+5=12
$$

$$
12+3+6=21
$$

$$
21+8+11=40
$$

No Free Lunch Theorems

David Wolpert

For every pattern a machine learning algorithm is good at learning, there's another pattern that same learner would be terrible at picking up

No Free Lunch

Models

Machine Learning algorithms produce models

Models allow predictions or offer insights

Examples

Decreasing latency by X increases Amazon's daily revenue by Y

White males without college degrees favor Trump by X\%
Females favor Clinton by Y\%

Models Approximate Reality

World is flat

World is a sphere

World is an oblate ellipsoid

Does the model provide useful predictions/insights
Under what condidtions is the model useful

What are the estimates of the model's error

Multiple Factors in Model

Amazon's daily revenue depends on
Latency
Price
Steps needed to order
Page layout
Some factors will be more important

Relevant suggestions
Search results
Font sizes
Color

Shipping costs

Regression

Regression

Measure of relation between mean of one variable (dependent) on one or more other variables (independent)

In chapter 11 of Julia for Data Science

Download the Jupyter notebook before reading
https://technicspub.com/analytics/
https://app.box.com/v/codefiles

Overview

Linear regression

Multiple linear regression

Generalized linear regression (model)

Is the dependent variable related to the independent variable

Generating the model
Error in the model

Effect of independent variables

Linear Regression

$$
\begin{aligned}
& f(x)=2 x+3 \\
& y=2 x+3
\end{aligned}
$$

Model

Dependent
Variable

Independent Variable

Linear Regression

Actual relation (assumed)

$$
y=a+b x
$$

Compute linear line that fits the data best

$$
y=a+b x+e
$$

e - error or residual

Goal is to minimize residual overall

Are They Related?

Covariance

If $x \& y$ are related then they should vary from their means in a similar way

$$
d x_{i}=x_{i}-\bar{x}
$$

$$
d y_{i}=y_{i}-\bar{y}
$$

positive values - positive relation
$\operatorname{cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{dx}_{\mathrm{i}} \mathrm{dy}_{\mathrm{i}}$
Values near zero indicate no relation

negative values - negative relation

In Julia use function
cov

Effects of Scale

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526.0

1 Pound = 452.6 grams

Changing the scale of units
Does not change the relationship Does change magnitude of Covariance

Makes covariance hard to evaluate

```
cov(pounds,Cost USD) == 50.8
cov(grams, Cost USD) == 23007
cov(grams, Cost INR) == 1,528,308.996
```


Units

$$
\begin{array}{ll}
d x_{i}=x_{i}-\bar{x} & \text { Lbs } \\
d y_{i}=y_{i}-\bar{y} & \text { USD }
\end{array}
$$

$$
\operatorname{cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{dx}_{\mathrm{i}} \mathrm{dy}_{\mathrm{i}}
$$

$\operatorname{cov}($ pounds,Cost USD) $==50.8 \mathrm{lbs} * U S D$ $\operatorname{cov}($ grams, Cost USD) $==23007$ grams*USD

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526.0

Normalizing Data

Convert data to a common scale

Example - divide by maximum value

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526.0

Cost	Amount
0.237	0.3
0.632	0.7
1.00	1

$\operatorname{cov}($ Cost,Amount $)==0.134$ (unitless)

Pearson's Correlation - r

$r=\frac{\operatorname{cov}(X, Y)}{\sigma_{x} \sigma_{y}}$

Julia function
cor

Normalized Covariance

Unitless

Range -1 to 1

1 = maximumly related
-1 - maximumly inversely related

0 - not related

Pearson's Correlation - r

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526.0

$\operatorname{cor}($ Cost USD,pounds $)=0.998$
$\operatorname{cor}($ Cost USD,grams $)==0.998$

Pearson's Correlation r Value Examples

Regression Line

Pearson's Co
$\operatorname{cor}(\mathrm{x}, \mathrm{y})==0.992$

What the line that minimizes the amount of residuals

Ordinary least squares

$$
\begin{aligned}
& b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \mathrm{~b}=\frac{\operatorname{cov}(\mathrm{X}, \mathrm{Y})}{\operatorname{var}(\mathrm{X})} \\
& a=\bar{y}-b \bar{x}
\end{aligned}
$$

GLM.jI Package

Linear models (lm) \& Generalized linear models (glm)

```
Pkg.add("GLM")
using GLM
Im(independentVars,dataframe) returns linear model fitting the data
glm(independentVars,dataframe,distribution, link)
fit() called by glm and Im to produce model
residuals(model)
coef(model) returns coefficients of fitted line
deviance(model)
stderr(model)
predict(model)
r2(model)
    returns predicted values of dependent variable
```


Example - Some Fake Data

using DataFrames
using Gadfly
using GLM
using Distributions
\#Adds random amount to value from distribution "dist"
\#Amount added is less than limit
function jitter(dist,value,limit)
value + (rand(dist, 1)[1] * 2 * limit) - limit end
$f(x)=2^{*} x+3$
$x=\operatorname{rand}(50) * 10$
$y=\operatorname{map}(z->j i t t e r(\operatorname{Normal}(), f(z), 0.4), x)$

Example - Are X \& Y related linearly?

Pearson's Co
$\operatorname{cor}(\mathrm{x}, \mathrm{y})==0.992$

near_exact_data $=$ DataFrame $(X=x, Y=y)$
plot(near_exact_data, $x=" X ", y=" Y ", G e o m . p o i n t, ~$
Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Data"))

Fitting the Data

```
near_exact_model = Im(Y~X, near_exact_data)
show(near_exact_model)
```

Formula: Y ~ 1 + X
Coefficients:

	Estimate	Std.Error t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	2.94384	0.188246	15.6382	$<1 e-19$
X	1.91493	0.0344778	55.5411	$<1 e-44$

Source

$$
f(x)=2^{*} x+3
$$

Model
fitted_f(x) $=1.91493^{*} x+2.94384$

What is t ?

	Estimate	Std.Error t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	2.94384	0.188246	15.6382	$<1 \mathrm{e}-19$
X	1.91493	0.0344778	55.5411	$<1 \mathrm{e}-44$

From Student's T-test
Used when do not know the population parmeters

When population in know use z value

Used to determine if should accept the regression line

$$
\text { Use } \operatorname{Pr}(>|t|)
$$

Examples

$X \& Y$ both random, no relation

$$
\operatorname{cor}(x, y)==0.0254
$$

	Estimate	Std.Error t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	10.8038	0.942533	11.4625	$<1 \mathrm{e}-22$
X	0.0270376	0.0756465	0.35742	0.7212

$Y=X$

$$
\operatorname{cor}(x, y)==1.0
$$

Estimate Std.Error $\quad t$ value $\operatorname{Pr}(>|t|)$
(Intercept) 2.00972e-15 1.67129e-16 $12.025<1 \mathrm{e}-24$
$X \quad 1.01 .34135 \mathrm{e}-177.45515 \mathrm{e} 16<1 \mathrm{e}-99$

Regression Line

$$
\text { fitted_f(x) }=1.91493^{*} x+2.94384
$$

plot(layer(near_exact_data,x="X",y="Y",Geom.point), layer(fitted_f, 0,10),
Guide.XLabel("X"),Guide.YLabel("Y"))

Regression Equation

fitted_coef = coef(near_exact_model)
fitted_f $(x)=$ fitted_coef[2]*x + fitted_coef[1]

Residuals

near_exact_data[:Residual] = residuals(near_exact_model)
plot(layer(near_exact_data, $x=" X ", y=$ "Residual",Geom.point), layer(x-> 0, 0,10),
Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Residuals"))

Coefficient of Determination $\mathbf{R}^{\mathbf{2}}$

$\mathrm{R}^{2}=1-\frac{\operatorname{var}(\varepsilon)}{\operatorname{var}(\mathrm{Y})} \quad \mathrm{e}=$ residuals,$~ \mathrm{Y}=$ observed data

Measure of how much the independent variable explains the variance of the data
r2(near_exact_model) $==0.985$

So one independent variable x contributes 98.5% of the variation in the data

Simple Regression and $\mathbf{R}^{\mathbf{2}}$

If only one independent variable
$R^{2}=r^{2} \quad$ (Pearson's Correlation squared)

In example

Pearson's Co
$\operatorname{cor}(\mathrm{x}, \mathrm{y})==0.992$

$$
\text { r2(near_exact_model) == } 0.985
$$

$0.992^{\wedge} 2=0.984$

Second Example

```
\(\operatorname{cor}(\mathrm{x}, \mathrm{y})==0.552\)
```


-100
10
X

$$
\begin{aligned}
& f(x)=2^{*} x+3 \\
& x=\operatorname{rand}(200) * 20 \\
& y=\operatorname{map}(z->j \operatorname{jitter}(\operatorname{Normal}(), f(z), 10), x)
\end{aligned}
$$

Regression line

Coefficients:
Estimate Std.Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lrrrr}\text { (Intercept) } & -8.12406 & 2.83688 & -2.86373 & 0.0046 \\ \mathrm{X} & 2.28285 & 0.24535 & 9.30447 & <1 \mathrm{e}-16\end{array}$
fitted_f(x) $=2.28^{*} x-8.12$
$f(x)=2^{*} x+3$

Residuals

$R^{2}=0.304$

Why Intercept So Off?

fitted_f(x) $=2.28^{*} x-8.12$
$f(x)=2^{*} x+3$

Coefficients:
Estimate Std.Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -8.12406 $2.83688-2.86373 \quad 0.0046$
$X \quad 2.28285 \quad 0.24535 \quad 9.30447$ <1e-16

Multiple Linear Regression

Using multiple independent varibles

Amazon's daily revenue depends on
Latency
Price
Steps needed to order
Page layout
Relevant suggestions
Search results
Font sizes
Color
Shipping costs

Two Independent Variable Example

$$
\begin{aligned}
& f(x, z)=2^{*} x-3^{*} z+3 \\
& x=\operatorname{rand}(200)^{*} 20 \\
& z=\operatorname{rand}(200)^{*} 20 \\
& \text { randomized_f(x,z) }=\text { jitter(Normal(),2*x, 1) - jitter(Normal(),3*z,0.5) + } 3
\end{aligned}
$$

Exact Data

exact_y $=\operatorname{map}((x, z)->f(x, z), x, z)$
exact_data $=$ DataFrame $(X=x, Z=z, Y=$ exact_y)
plot(exact_data, $x=" X$ ", $y=" Y$ ",Geom.point,
Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Exact Data, X \& Y"
plot(exact_data, $x==" Z ", y=" Y ", G e o m . p o i n t, ~$
Guide.XLabel("Z"),Guide.YLabel("Y"),Guide.Title("Exact Data, Z \& Y"'

Fake Data

$y=\operatorname{map}((x, z)->$ randomized_f(x,z),x,z)
two_data = DataFrame($\mathrm{X}=\mathrm{x}, \mathrm{Z}=\mathrm{z}, \mathrm{Y}=\mathrm{y}$)
plot(two_data, $x=" X$ ", $y=" Y$ ",Geom.point,
Guide.XLabel("X"),Guide.YLabel("Y"),Guide.Title("Data, X \& Y"))
plot(two_data,x="Z",y="Y",Geom.point,
Guide.XLabel("Z"),Guide.YLabel("Y"),Guide.Title("Data, Z \& Y"))
$\operatorname{cor}(\mathrm{x}$, exact_y) $=0.519$
$\operatorname{cor}(z$, exact_y $)==-0.825$

$$
\begin{aligned}
& \operatorname{cor}(x, y)=0.519 \\
& \operatorname{cor}(z, y)=-0.819
\end{aligned}
$$

The Model

```
two_model = Im(Y~X + Z,two_data)
show(two_model)
```

Formula: Y ~ 1 + X + Z

Coefficients:

	Estimate Std.Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	2.1751	0.431312	5.04299	$<1 \mathrm{e}-5$
X	2.02513	0.0288004	70.316	$<1 \mathrm{e}-99$
Z	-3.00437	0.0285496	-105.233	$<1 \mathrm{e}-99$

```
fitted_coef = coef(two_model)
fitted_f(x,z) = fitted_coef[3]*z + fitted_coef[2]*x + fitted_coef[1]
    \(=-3.004^{*} z+2.025^{*} x+2.1751\)
```

$f(x, z)=2^{*} x-3^{*} z+3$

$\mathbf{R}^{\mathbf{2}}$ - Coefficient of Multiple Determination

When have multiple independent variables R^{2} has new name

Adding an other independent variable

Contributes to explain dependent variable
R^{2} increases

Has nothing to do with dependent variable

$$
R^{2} \text { increases }
$$

Adjusted \mathbf{R}^{2}

Modified version of R^{2}

Adding new independent variable only increases R^{2} more that expected by chance
adjr2(two_model)

