CS 696 Intro to Big Data: Tools and Methods Fall Semester, 2016 Doc 10 Statistics Sep 26, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Descriptive Statistics

mean median mode variance standard variation quantiles

Descriptive Statistics

Arithmetic mean

mean(numbers) = sum(numbers)/length(numbers)

mean([1,7,3,8,5]) == 4.80

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

median

Middle value of sorted list of numbers

If even number of values then mean of middle two values

median([1,7,3,8,5]) == 5.00

mode

Value that appears the most in the data

Descriptive Statistics

Variance

Measures the spread in the numbers

$$s^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \overline{x} \right)^2$$

Standard Deviation, (SD, s, σ) square root of the variance

Bessel's Correction

Normally only have a sample of data

Computing mean from sample introduces bias

$$s^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \overline{x} \right)^2$$

Bessel's correction for this bias Divide by N-1

For large N this is not needed

$$s^2=rac{1}{N-1}\sum_{i=1}^N(x_i-\overline{x})^2.$$

But if underlying distribution is skewed or has long tails (kurtosis) other biases are introduced

Julia functions

var([2,4,4,4,5,5,7,9])	4.57
std([2,4,4,4,5,5,7,9])	2.14

var([2,4,4,4,5,5,7,9],mean=5)	4.57
std([2,4,4,4,5,5,7,9],mean=9)	4.78

Me & Bill Gates

mean of mine & Bill Gates net worth = \$39.6 B

variance 3144.2 standard deviation 51.6

mean of Zuckerberg & Carlos Slim net worth = \$52.3 B

variance 11.5 standard deviation 3.39

Quantiles

q-quantiles

Cutpoints that divide the sorted data into q equal sized groups

4-quantile, quartile

Red Bar shows middle two quartiles

White bar is median

Range/Median

Plotting with Gadfly

http://gadflyjl.org/stable/index.html

using Gadfly

plot(x=rand(10), y=rand(10))

0.5

х

1.0

Gadfly Features

Layers Themes Geometries Guides Statistics Scales

Layers

plot(layer(x=rand(10), y=rand(10), Geom.point), layer(x=rand(10), y=rand(10), Geom.line))

Themes

```
plot(x=rand(10), y=rand(10),
```

Theme(panel_fill=colorant"black", default_color=colorant"orange"))

Using DataFrames

large = DataFrame(A = 1:100, B = rand(100)) plot(large, x = "A", y = "B")

R Datasets

Datasets collected to use to learn statistics & use R

Commonly used

List

https://vincentarelbundock.github.io/Rdatasets/datasets.html

```
using DataFrames
using RDatasets
```

dataset("car", "Salaries") 2008-9 Academic Salary

397×6 DataFrames.DataFrame

	Row	Rank D [.]	iscipline		YrsSincePhD		YrsService		Sex	S	alary
I	1	"Prof"	"B"	I	19	I	18	I	"Male"		139750
I											
	2	"Prof"	"B"	Ι	20		16	Ι	"Male"		173200
					17						

Salary & Sex

plot(dataset("car", "Salaries"), x="Salary", color="Sex", Geom.histogram)

Salary & Rank

plot(dataset("car", "Salaries"), x="Salary", color="Rank", Geom.histogram)

Scatter Plot: Salary-Years Colored by Rank

plot(dataset("car", "Salaries"), y="Salary", x="YrsSincePhD", color="Rank",

Geom.point,

Geom.smooth(method=:lm))

Box Plots (Tukey Method)

plot(dataset("car", "Salaries"), y="Salary", x="Sex", Geom.boxplot)

Salary by Discipline

plot(dataset("car", "Salaries"), y="Salary", x="Discipline",Geom.boxplot)

Monday, September 26, 16

Salary by Rank

plot(dataset("car", "Salaries"), y="Salary", x="Rank",Geom.boxplot)

Beeswarm: Salary by Rank with Sex

plot(dataset("car", "Salaries"), x="Rank", y="Salary",color="Sex",Geom.beeswarm)

Violin Plot: Salary by Rank

plot(dataset("car", "Salaries"), x="Rank", y="Salary",Geom.violin)

Distributions

Think in distributions not numbers

Poincare's Baker France late 1800's Bread hand made, regulated Variation in weight of bread Poincare suspected baker of cheating

Dwell Time & A/B Testing of Websites Dwell time - how long people spend on a web page

A/B testing - Showing two versions of a page to different people

How to tell if dwell time differs from between versions

Distributions.jl

Generate common distributions Fit data to distributions using Gadfly using DataFrames using Distributions

normal_dist = Normal()
normal_sample = rand(normal_dist,500)
normal_dataframe = DataFrame(NormalData = normal_sample)
plot(normal_dataframe, x = "NormalData", Geom.histogram)

pdf generates a function from the distribution
plot(x -> pdf(normal_dist,x), -4,4)

fit
fitted_dist = fit(Normal,normal_sample)

Normal(μ=-0.0006388217034921672, σ=1.012334831313701)

Normal (Gaussian) Distribution

$$f(x \mid \mu, \sigma^2) = rac{1}{\sqrt{2\sigma^2 \pi}} \; e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Normal distribution is specified by

- μ mean, central point
- σ standard deviation

Monday, September 26, 16

Source: https://en.wikipedia.org/wiki/Normal_distribution

Populations & Samples

Populations - all the items Sample - set of representative items

Measure	Sample statistic	Population parameter				
Number of items	n	Ν				
Mean	x	μχ				
Standard deviation	Sx	σ_{x}				
Standard error	S _x					

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

Hypothesis Testing

H₀ - Status quo Null hypothesis

Poincare's Baker bread weight is correct

People spend the same amount of time on version A and B of the website

H₁ - What you are trying to prove Alternative hypothesis

Poincare's Baker bread weight is less than it should be

People spend the more time on version A than B of the website

alpha - probability that H1 is false

0.05	Sample N loaves of bread compute mean
0.01 0.001	If probability of that mean occuring from properly manufactured bread is less than
	0.05 we accept H ₁

Types of Errors

False Positive (FP), type I error Accepting H₁ when it is not true Smaller alpha values reduce FP

False Negative (FN), type II error Rejecting H₁ when it is true Small alphas increase FN

Causation & Correlation

Statistics

Does not prove that one thing is caused by another Demonstrates that events are rare

If we accept H_1 with alpha = 0.05

5% chance that H_1 is wrong

If 100 studies accept H₁ with alpha = 0.05Expect about 5 of them are false positives

Sensitivity & Specificity

Sensitivity

Correctly predicted H₁ cases

Total number of H₁ cases

Specificity

Correctly predicted non-H1 cases

Total number of non-H1 cases

Confidence Interval

Given a distribution and a p value

The interval that will contain 1-p of the values

95% Confidence, **p = 0.05**

±1.96*Standard Deviation

Computing Confidence Interval in Julia

using HypothesisTests

ci(OneSampleTTest(your_data))
ci(OneSampleTTest(your_data), 0.05)

OneSampleTTest

EqualVarianceTTest

Two samples come from a distributions with equal variances

UnequalVarianceTTest

Monday, September 26, 16

Two samples come from a distributions with unequal variances

Confidence Interval & Standard Error

Poincare's Baker

How to check for Cheating Bakers

Weigh N samples of bread

Compute confidence interval of the mean of the sample

See if expected mean is in confidence interval

Poincare's Baker

Assume Bread weight supposed to be 1000g Standard deviation of 30g Baker makes bread 20g lighter

using Distributions	10 Samples		
ng HypothesisTests	а	b	
	974.0	990.0	
d = Normal(980, 30)	972.5	988.0	
fake_sample = rand(d,100)	966.0	983.0	
(a,b) = ci(OneSampleTTest(fake_sample),0.01)	971.2	985.0	
	972.8	988.0	

	00010
966.0	983.0
971.2	985.0
972.8	988.0
972.1	988.0
973.3	989.0
970.5	988.0
971.9	986.0
970.8	986.0

Poincare's Baker

Assume Bread weight supposed to be 1000g Standard deviation of 30g Baker makes bread 10g lighter

		10 Samples		
	using Distributions	а	b	
	using HypothesisTests	978.6	995.0	
d = Normal(990,30) fake_sample = rand(d,100) (a,b) = ci(OneSampleTTest(fake_sample),0.01)	d = Normal(990,30)	983.2	998.0	
		983.1	998.0	
		979.7	997.0	
	(a,b) = ci(OneSampleTTest(fake_sample),0.01)	982.7	999.0	
		986.8	1000.0	
		983.7	999.0	

983.7	999.0
979.9	995.0
981.3	997.0
984.8	1002.0

Central Limit Theorem

rand(n)

Generates n random numbers uniformly between 0 and 1

```
data = rand(10000)
plot(DataFrame(Uniform=data), x = "Uniform", Geom.histogram)
```


Central Limit Theorem

Let

 $X_1, X_2, ..., X_N$ random sample $S_N = (X_1 + ... + X_N)/N$

Then as N gets large S_N approximates the normal distribution

using Gadfly using DataFrames using Distributions

```
sample_mean(n) = sum(rand(n))/n
samples = map(x -> sample_mean(500),1:5000)
plot(DataFrame(Means= samples), x="Means", Geom.histogram)
```

fit(Normal, samples)

```
(µ=0.5000697736034079, σ=0.012822227485544065)
```


Dwell Times on Web sites

Look at Dwell data of website

Don't know the distribution of the dwell times

But daily mean of dwell times will be normally distributed

Dwell Data

data_location = "Some location on my hard drive"

```
dwell_times = readtable(data_location * "dwell-times.tsv", separator = '\t')
rename!(dwell_times,:dwell_time,:Dwell)
show(dwell_times)
```

l	Row		date		Dwell	I
F				+		
I	1	Ι	"2015-01-01T00:03:43Z"		74	I
I	2	I	"2015-01-01T00:32:12Z"		109	I
I	3	I	"2015-01-01T01:52:18Z"		88	I
I	4		"2015-01-01T01:54:30Z"		17	I

54000×2 DataFrames.DataFrame

Dwell Times

plot(dwell_times, x="Dwell", Geom.histogram(bincount = 50))

Exponential Distribution

Log2(Y)

Log Scale - So Dwell Time is Exponential Dist.

plot(dwell_times, x="Dwell", Geom.histogram(bincount = 50), Scale.y_log2)

Compute Daily Mean

To use aggregate on date - so need to remove time from

```
remove_time(s::String) = s[1:10]
function remove_time(d::DataFrame)
  d_copy = copy(d)
  rows = size(d)[1]
  for row in 1:rows
    d_copy[row,1] = remove_time(d[row,1])
    end
    d_copy
end
```

```
without_time = remove_time(dwell_times)
```

```
daily_dwell = aggregate(without_time,:date, mean)
```

Central Limit Theorem

plot(daily_dwell, x="Dwell_mean", Geom.histogram(bincount=20))

Week Days

sample size = 107

mean = 90.2

std = 3.7

CI of mean p = 0.05 (115,122)

Weekends

sample size = 107 mean = 118.3 std = 11.0 CI of mean p = 0.05 (89.5,90.9)

Pvalue

Probability that the two samples are taken from the same distribution

using HypothesisTests pvalue(UnequalVarianceTTest(weekend[:Dwell_mean],week_day[:Dwell_mean]))

8.25e-21