CS 696 Intro to Big Data: Tools and Methods Fall Semester, 2016 Doc 10 Statistics Sep 26, 2016

Copyright ©, All rights reserved. 2016 SDSU \& Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Descriptive Statistics

mean
median
mode
variance
standard variation
quantiles

Descriptive Statistics

Arithmetic mean
mean(numbers) $=\operatorname{sum}\left(\right.$ numbers)/length(numbers) $\quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

$$
\operatorname{mean}([1,7,3,8,5])==4.80
$$

median
Middle value of sorted list of numbers
If even number of values then mean of middle two values

$$
\operatorname{median}([1,7,3,8,5])==5.00
$$

mode
Value that appears the most in the data

Descriptive Statistics

Variance
Measures the spread in the numbers

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{1}-\bar{x}\right)^{2}
$$

Standard Deviation, (SD, s, σ) square root of the variance

Bessel's Correction

Normally only have a sample of data

Computing mean from sample introduces bias

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Bessel's correction for this bias Divide by $\mathrm{N}-1$

$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} .
$$

For large N this is not needed

But if underlying distribution is skewed or has long tails (kurtosis) other biases are introduced

Julia functions

$$
\begin{array}{ll}
\operatorname{var}([2,4,4,4,5,5,7,9]) & 4.57 \\
\operatorname{std}([2,4,4,4,5,5,7,9]) & 2.14
\end{array}
$$

$$
\begin{array}{ll}
\operatorname{var}([2,4,4,4,5,5,7,9], \text { mean }=5) & 4.57 \\
\operatorname{std}([2,4,4,4,5,5,7,9], \text { mean }=9) & 4.78
\end{array}
$$

Me \& Bill Gates

mean of mine \& Bill Gates net worth $=\$ 39.6$ B
variance 3144.2
standard deviation 51.6
mean of Zuckerberg \& Carlos Slim net worth = \$52.3 B
variance 11.5
standard deviation 3.39

Quantiles

q-quantiles
Cutpoints that divide the sorted data into q equal sized groups

4-quantile, quartile

Red Bar shows middle two quartiles

White bar is median

Plotting with Gadfly

http://gadflyjl.org/stable/index.html
using Gadfly
$\operatorname{plot}(x=r a n d(10), y=r a n d(10))$

$\operatorname{plot}(x=r a n d(10), y=r a n d(10)$, Geom.point, Geom.line)

Gadfly Features

Layers

Themes
Geometries
Guides
Statistics
Scales

Layers

plot(layer(x=rand(10), y=rand(10), Geom.point), layer($x=\operatorname{rand}(10), y=r a n d(10)$, Geom.line))

plot(layer(x=rand(10), y=rand(10), Geom.point, order = 2), layer($x=$ rand(10), $y=$ rand(10), Geom.line, order = 1), Guide.XLabel("XLabel"),
Guide.YLabel("YLabel"), Guide.Title("Title"))

Title

Themes

$\operatorname{plot}(x=r a n d(10), y=r a n d(10)$,
Theme(panel_fill=colorant"black", default_color=colorant"orange"))

Using DataFrames

```
large = DataFrame(A = 1:100, B = rand(100))
plot(large, x = "A", y = "B")
```


R Datasets

Datasets collected to use to learn statistics \& use R

Commonly used
List
https://vincentarelbundock.github.io/Rdatasets/datasets.html
using DataFrames
using RDatasets
dataset("car", "Salaries") 2008-9 Academic Salary

397×6 DataFrames.DataFrame
| Row | Rank| Discipline | YrsSincePhD | YrsService | Sex | Salary |
| 1 | "Prof"| "B" | 19 | 18 | "Male" | 139750
| 2 | "Prof"| "B" | 20 |7 | 16 | "Male" | 173200

Salary \& Sex

plot(dataset("car", "Salaries"), x="Salary", color="Sex", Geom.histogram)

Salary \& Rank

plot(dataset("car", "Salaries"), x="Salary", color="Rank", Geom.histogram)

Scatter Plot: Salary-Years Colored by Rank

plot(dataset("car", "Salaries"), y="Salary", x="YrsSincePhD", color="Rank", Geom.point,
Geom.smooth(method=:Im))
2.5×10^{5}

Box Plots (Tukey Method)

```
plot(dataset("car", "Salaries"), y="Salary", x="Sex", Geom.boxplot)
```


Salary by Discipline

plot(dataset("car", "Salaries"), y="Salary", x="Discipline",Geom.boxplot)
2.5×10^{5}

B
A
Discipline

Salary by Rank

plot(dataset("car", "Salaries"), y="Salary", x="Rank",Geom.boxplot)

Beeswarm: Salary by Rank with Sex

plot(dataset("car", "Salaries"), x="Rank", y="Salary",color="Sex",Geom.beeswarm)

Violin Plot: Salary by Rank

plot(dataset("car", "Salaries"), x="Rank", y="Salary",Geom.violin)
3×10^{5}

Distributions

Think in distributions not numbers

Poincare's Baker
France late 1800's
Bread hand made, regulated
Variation in weight of bread
Poincare suspected baker of cheating

Dwell Time \& A/B Testing of Websites
Dwell time - how long people spend on a web page

A/B testing - Showing two versions of a page to different people

How to tell if dwell time differs from between versions

Distributions.jl

Generate common distributions
using Gadfly using DataFrames using Distributions Fit data to distributions

```
normal_dist = Normal()
normal_sample = rand(normal_dist,500)
normal_dataframe = DataFrame(NormalData = normal_sample)
plot(normal_dataframe, x = "NormalData", Geom.histogram)
# pdf generates a function from the distribution
plot(x -> pdf(normal_dist,x), -4,4)
```

\# fit
fitted_dist = fit(Normal,normal_sample)
$\operatorname{Normal}(\mu=-0.0006388217034921672, \sigma=1.012334831313701)$

Normal (Gaussian) Distribution

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \sigma^{2} \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Normal distribution is specified by
μ - mean, central point
σ - standard deviation

Populations \& Samples

Populations - all the items Sample - set of representative items

Measure	Sample statistic	Population parameter
Number of items	n	N
Mean	$\overline{\mathrm{X}}$	μ_{X}
Standard deviation	S_{X}	σ_{X}
Standard error	$S_{\bar{X}}$	

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

Hypothesis Testing

Ho - Status quo
Null hypothesis
Poincare's Baker bread weight is correct

People spend the same amount of time on version A and B of the website
H_{1} - What you are trying to prove Alternative hypothesis

Poincare's Baker bread weight is less than it should be

People spend the more time on version A than B of the website
alpha - probability that H_{1} is false
0.05
0.01
0.001

Sample N loaves of bread compute mean
If probability of that mean occuring from properly manufactured bread is less than 0.05 we accept H_{1}

Types of Errors

False Positive (FP), type I error
Accepting H_{1} when it is not true
Smaller alpha values reduce FP

False Negative (FN), type II error
Rejecting H_{1} when it is true
Small alphas increase FN

Causation \& Correlation

Statistics
Does not prove that one thing is caused by another Demonstrates that events are rare

If we accept H_{1} with alpha $=0.05$
5% chance that H_{1} is wrong

If 100 studies accept H_{1} with alpha $=0.05$
Expect about 5 of them are false positives

Sensitivity \& Specificity

Sensitivity
Correctly predicted H_{1} cases
Total number of H_{1} cases

Specificity
Correctly predicted non-H1 cases
Total number of non- H_{1} cases

Confidence Interval

Given a distribution and a p value

The interval that will contain 1-p of the values

95\% Confidence, p = 0.05

Computing Confidence Interval in Julia

using HypothesisTests
ci(OneSampleTTest(your_data)) ci(OneSampleTTest(your_data), 0.05)

OneSampleTTest

EqualVarianceTTest
Two samples come from a distributions with equal variances

UnequalVarianceTTest
Two samples come from a distributions with unequal variances

Confidence Interval \& Standard Error

using Distributions
function t_test(x; conf_level=0.95)
alpha = (1-conf_level)
tstar = quantile(TDist(length(x)-1), 1 - alpha/2)
SE $=\operatorname{std}(\mathrm{x}) /$ sqrt(length $(\mathrm{x}))$
lo, hi $=$ mean $(x)+[-1,1]$ * tstar * SE
"(\$lo, \$hi)"
end

$$
\operatorname{mean}(x)-2.04 \text { * } S E
$$

mean(x)
Sample Size 31

$$
\begin{aligned}
\text { tstar } & =2.04 \text { alpha }=0.05 \\
\text { tstar } & =2.75 \text { alpha }=0.01 \\
\text { tstar } & =3.65 \text { alpha }=0.001
\end{aligned}
$$

Sample Size 3000
tstar $=1.96$ alpha $=0.05$
tstar $=2.58$ alpha $=0.01$
tstar $=3.29$ alpha $=0.001$
mean(x) + 2.04 * SE

Confidence Interval

Poincare's Baker

How to check for Cheating Bakers

Weigh N samples of bread

Compute confidence interval of the mean of the sample

See if expected mean is in confidence interval

Poincare's Baker

Assume
Bread weight supposed to be 1000 g
Standard deviation of 30 g
Baker makes bread 20g lighter

using Distributions	10 Samples	
using HypothesisTests	a	b
	974.0	990.0
d = Normal(980,30)	972.5	988.0
fake_sample = rand(d,100)	966.0	983.0
(a,b) = ci(OneSampleTTest(fake_sample),0.01)	971.2	985.0
	972.8	988.0
972.1	988.0	
973.3	989.0	
	970.5	988.0
	971.9	986.0
	970.8	986.0

Poincare's Baker

Assume
Bread weight supposed to be 1000 g
Standard deviation of 30 g
Baker makes bread 10 g lighter
using Distributions
using HypothesisTests
d $=\operatorname{Normal}(990,30)$
fake_sample = rand(d,100)
(a,b) = ci(OneSampleTTest(fake_sample),0.01)

10 Samples
a b
978.6995 .0
983.2998 .0
983.1998 .0
979.7997 .0
982.7999 .0
986.81000 .0
983.7999 .0
979.9995 .0
981.3997 .0
984.81002 .0

Central Limit Theorem

rand(n)
Generates n random numbers uniformly between 0 and 1

```
data = rand(10000)
plot(DataFrame(Uniform=data), x = "Uniform", Geom.histogram)
```


Central Limit Theorem

```
Let
X1, X2, \ldots, XN random sample
SN}=(\mp@subsup{X}{1}{}+\ldots+\mp@subsup{X}{N}{})/
```

Then as N gets large S_{N} approximates the normal distribution
using Gadfly
using DataFrames
using Distributions

sample_mean(n) $=\operatorname{sum}(\operatorname{rand}(n)) / n$
samples $=\operatorname{map}(x$-> sample_mean(500),1:5000)
plot(DataFrame(Means= samples), x="Means", Geom.histogram)
fit(Normal,samples)
($\mu=0.5000697736034079, \sigma=0.012822227485544065$)

Dwell Times on Web sites

Look at Dwell data of website

Don't know the distribution of the dwell times

But daily mean of dwell times will be normally distributed

Dwell Data

data_location = "Some location on my hard drive"
dwell_times = readtable(data_location * "dwell-times.tsv", separator = 'lt') rename!(dwell_times,:dwell_time,:Dwell) show(dwell_times)

54000×2 DataFrames.DataFrame

Row	date	Dwell
1	\| "2015-01-01T00:03:43Z"	74
2	\| "2015-01-01T00:32:12Z"	109
3	\| "2015-01-01T01:52:18Z"	88
4	"2015-01-01T01:54:30Z"	17

Dwell Times

plot(dwell_times, x="Dwell", Geom.histogram(bincount = 50))

Exponential Distribution

Log Scale - So Dwell Time is Exponential Dist.

plot(dwell_times, x="Dwell", Geom.histogram(bincount = 50), Scale.y_log2)

Compute Daily Mean

To use aggregate on date - so need to remove time from

```
remove_time(s::String) \(=\mathrm{s}[1: 10]\)
function remove_time(d::DataFrame)
    d_copy = copy(d)
    rows = size(d)[1]
    for row in 1:rows
        d_copy[row,1] = remove_time(d[row, 1])
    end
    d_copy
end
without_time = remove_time(dwell_times)
daily_dwell = aggregate(without_time,:date, mean)
```


Central Limit Theorem

plot(daily_dwell, x="Dwell_mean", Geom.histogram(bincount=20))

Week Days

sample size $=107$
mean $=90.2$
std $=3.7$
Cl of mean $p=0.05$
$(115,122)$

Weekends

sample size $=107$
mean $=118.3$
std $=11.0$
Cl of mean $\mathrm{p}=0.05$
(89.5 ,90.9)

Pvalue

Probability that the two samples are taken from the same distribution

```
using HypothesisTests
pvalue(UnequalVarianceTTest(weekend[:Dwell_mean],week_day[:Dwell_mean]))
```

8.25e-21

