
CS 696 Intro to Big Data: Tools and Methods
Fall Semester, 2016

Doc 9 Parallel Computing
Sep 22, 2016

Copyright ©, All rights reserved. 2016 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Wednesday, September 21, 16

2

Parallel Computing

Wednesday, September 21, 16

3

Concurrent computing

Running multiple processes or threads on same processor

Processes or threads are time-sliced

Parallel computing

Running multiple processes on different processors

Processes in same program run at the same time on different processors

Wednesday, September 21, 16

4

Scaling up

Adding more resources to a machine to allow it to handle larger tasks
Memory
Disk space
Faster processor

Scaling out

Adding more machines/processors to handle larger tasks

Requires parallel programming

Wednesday, September 21, 16

Julia Parallel Processing

5

Low level constructs

High level constructs

Runs on
Multicore processors
Clusters

Cluster management

Experimental Julia to C/C++ compilers from Intel Labs
Run Julia code 20 to 100 times faster than Spark
Spark claims to be 10 to 100 times faster than Hadoop

Wednesday, September 21, 16

Julia Parallel Processing - Low Level

6

@spawn, @spawnat
Run code on separate/remote processor

@everywhere
Run a command on all processors

fetch
Obtain results from separate processor

put!
store a value on a separate processor

Wednesday, September 21, 16

7

addprocs(2) # only have two cores
workers() # [2, 3]
procs() # [1, 2, 3]

Wednesday, September 21, 16

Adding 1 elementwise In parallel

8

addprocs(2) # only have two cores
workers() # [2, 3]
procs() # [1, 2, 3]

remote = @spawn rand(2,2) # RemoteRef{Channel{Any}}(2,1,3)

fetch(remote) #= [0.477549 0.193374;
 0.250799 0.0512077]

result = @spawn 1 .+ fetch(remote)

fetch(result) # [1.47755 1.19337;
 1.2508 1.05121]

Wednesday, September 21, 16

9

A = rand(n,n)
Aref = @spawn sum(A^2)
fetch(Aref)

Bref = @spawn sum(rand(n,n)^2)
fetch(Bref)

You need to be aware what you are doing on each processor

Do you need to send A from P1 to P2?

Wednesday, September 21, 16

10

function count_heads(n)
 c::Int = 0
 for i=1:n
 c += rand(Bool)
 end
 c
end

a = @spawn count_heads(100000000)
b = @spawn count_heads(100000000)
fetch(a)+fetch(b)

On worker 5:
function count_heads not defined on process 3

Wednesday, September 21, 16

11

require("count_heads")

a = @spawn count_heads(100000000)
b = @spawn count_heads(100000000)
fetch(a)+fetch(b)

function count_heads(n)
 c::Int = 0
 for i=1:n
 c += rand(Bool)
 end
 c
end

count_heads.jl

Put count_heads.jl in Julia path

In Julia

Wednesday, September 21, 16

High-level Parallel/Performance Constructs

12

@parallel

Wednesday, September 21, 16

@parallel

13

@parallel reducer for var = range
 body
end

Divide the loop among worker processes

Each process accumulates results and used reducer to combine the results

Result is send back to master and reduce is used combine all results

addprocs(10)
@parallel (+) for k = 1:100_000
 rand(1)
end

Each worker will sum 10_000
random numbers

Master will sum up the 10 results

Assuming you have 10 processors

Wednesday, September 21, 16

Computing Pi

14

1

Area = pi*r*r = pi

1

1

Area = pi/4

1

1

Area of Square = 1

Select random point in unit square

Probability that point is in the quarter Circle is (pi/4)/1 = pi/4

Select N random points in unit square
Let K = number of points in quarter circle
K should be about N*pi/4
4K/N should be about pi

Wednesday, September 21, 16

Computing Pi

15

function findpi(n)
 inside = 0
 for i = 1:n
 x, y = rand(2)
 if (x^2 + y^2 <= 1)
 inside +=1
 end
 end
 4 * inside / n
end

rand(2)
returns two random numbers
between 0 and 1

N findpi(N)

1_000 3.148

100_000 3.15028

100_000_000 3.14169832

1_000_000_000 3.141595912

π = 3.1415926535897...

Wednesday, September 21, 16

Code from http://www.exegetic.biz/blog/2015/09/monthofjulia-day-12-parallel-processing/. Of course we are measuring how
random the random number generator is

Parallel Version

16

function parallel_findpi(n)
 inside = @parallel (+) for i = 1:n
 x, y = rand(2)
 x^2 + y^2 <= 1 ? 1 : 0
 end
 4 * inside / n
end

Wednesday, September 21, 16

findpi verses parallel_findpi

17

N findpi(N) parallel_findpi(N) Speedup

1_000 0.000079 0.003326 0.02

100_000 0.012105 0.06380 0.19

100_000_000 7.234 2.19617 3.29

1_000_000_000 72.36 18.660 3.88

On Edora - Has 4 Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz processors

addprocs(4)

Time to Run in Seconds

Wednesday, September 21, 16

Speedup

18

T(1) = time for sequnetial program to run

T(N) = time for parallel program to run on N processors

S(N) = speedup using N processors

S(N) = T(1)/T(N)

Wednesday, September 21, 16

Timings on JuliaBox - 16 CPU

19

N findpi(N)
parallel_findpi(N)

16 processor
parallel_findpi(N)

8 processor

100_000 0.009 0.009 0.010

1_000_000 0.083 0.030 0.069

10_000_000 0.813 0.234 0.216

100_000_000 8.143 1.656 2.133

1_000_000_000 82.219 14.663 20.762

10_000_000_000 125.585 246.524

Time to Run in Seconds

100_000 0.009 1 0.9

1_000_000 0.083 2.8 1.2

10_000_000 0.813 3.5 3.8

100_000_000 8.143 4.9 3.8

1_000_000_000 82.219 5.6 4.0

10_000_000_000 6.5 3.3

Speedup

Wednesday, September 21, 16

Amdahl’s Law

20

Ts = time of task that is inherently sequential

Tp = time of task that can be parallelized

T(1) = time for sequnetial program to run
T(N) = time for parallel program to run on N processors
S(N) = speedup using N processors

T(1) = Ts + Tp

T(N) = Ts + Tp/N Assuming we can parallelize perfectly

S(N) = T(1)/T(N)
 = (Ts + Tp)/(Ts + Tp/N)

Wednesday, September 21, 16

Amdahl’s Law

21

S(N) = (Ts + Tp)/(Ts + Tp/N)

if Ts = 0 and we can perfectly parallelize the task we get

S(N) = Tp/(Tp/N) = N

Ts is never zero
Perfect parallization is not possible

So

S(N) < N

Wednesday, September 21, 16

Amdahl’s Law

22

S(N) = (Ts + Tp)/(Ts + Tp/N)
S(N) < N

Theory

Practice
It is possible for S(N) > N

How
Single processor may not be able to fit data in physical memory
Paging will significally slow sequenial program down
N processors can have more total memory that single processor
So parallel version may not have paging issues

Wednesday, September 21, 16

More Realistic Amdahl’s Law

23

Ts = time of task that is inherently sequential

Tp = time of task that can be parallelized

Tis = Average additional serial time doing interprocessor communication
 Assume each processor takes same amount of time
 Total time is N*Tis

Tip - Average additional time by each processor doing set up, idle time, etc.

S(N) = (Ts + Tp)/(Ts + N*Tis + Tip + Tp/N)

Wednesday, September 21, 16

Source http://www.phy.duke.edu/~rgb/brahma/Resources/als/als/node3.html

24

S(N) = (Ts + Tp)/(Ts + N*Tis + Tip + Tp/N)

Ts = Tip = 0
Tp = 10_000
Tis = 20 = 0.2% * Tp

Wednesday, September 21, 16

Monte Carlo Method

25

Uses repeated random sampling to obtain numerical results

Used mainly in:

Optimization
Numerical Integration
Generating draws from probability distribution

Wednesday, September 21, 16

Embarrassingly (Pleasingly) Parallel

26

Little or no effort needed to separate problem into parallel tasks

Little or no communication needed between parallel tasks

Searching a web page that contains key words

These are the types of problems that can be

Solved using Hadoop & Spark

Compilers can detect some forms and parallelize for you

Wednesday, September 21, 16

Distributed Arrays - DistributedArrays.jl

27

Distributes Arrays among processors

Can distribute arrays from master to slaves

Can create arrays on slaves

Master can work arrays on slaves

Wednesday, September 21, 16

Distributing Data

28

P1 P4P2 P3

Data
D3

D1 D2

D4

Wednesday, September 21, 16

Creating a Distributed Array

29

 dzeros(100,100,10)
 dones(100,100,10)
 drand(100,100,10)
 drandn(100,100,10)
 dfill(x,100,100,10)

Wednesday, September 21, 16

Using DistributedArrays.jl

30

onmaster = rand(100,100)
distributed = distribute(onmaster) #distribute onmaster to the workers

sum(distributed) # compute sum locally on workers
 # combine the result on master

heads = map(x -> x > 0.5,distributed) # apply map on workers
 $ return result on master

Wednesday, September 21, 16

SharedArrays

31

3×4 SharedArray{Int64,2}:
 2 2 3 4
 2 3 3 4
 2 3 4 4

S = SharedArray(Int, (3,4), init = S -> S[Base.localindexes(S)] = myid())

Each worker has access to the array

addprocs(3)
3-element Array{Int64,1}:
 2
 3
 4

Wednesday, September 21, 16

ClusterManagers

32

Launches worker processes in a cluster environment
Managing events during the lifetime of each worker
Providing data transport

Julia Cluster

The initial Julia process, also called the master, is special and has an id of 1
Only the master process can add or remove worker processes
All processes can directly communicate with each other

Wednesday, September 21, 16

Types of Cluster Managers

33

LocalManager,
used when addprocs() or addprocs(np::Integer) are called

SSHManager
used when addprocs(hostnames::Array) is called with a list of hostnames

Remote hosts need passwordless login enabled

Wednesday, September 21, 16

ArrayFire.jl

34

GPU computing

using ArrayFire

a = rand(10, 10)
on_gpu = AFArray(a)

result_on_gpu = (on_gpu + 1)/5

result_on_cpu = Array(result_on_cpu)

Wednesday, September 21, 16

HPAT.jl, ParallelAccelerator.jl

35

Intel Labs projects to provide high level efficient & fast parallel code

ParallelAccelerator.jl
Converts Julia code to C/C++
Imports C/C++ code into Julia

Supports subset of Julia

Uses implicit parallelism in
map, reduce, comprehension
.+, .- , .* , ./ converted into data-parallel map operations

HPAT.jl
Using ParallelAccelerator converts Julia code to
C/C++ & MPI calls for distributed computing

Wednesday, September 21, 16

Sample Using ParallelAccelertor

36

using ParallelAccelerator
@acc function calc_pi(n)
 x = rand(n) .* 2.0 .- 1.0
 y = rand(n) .* 2.0 .- 1.0
 return 4.0 * sum(x.^2 .+ y.^2 .< 1.0)/n
end

function calc_pi_normal(n)
 x = rand(n) .* 2.0 .- 1.0
 y = rand(n) .* 2.0 .- 1.0
 return 4.0 * sum(x.^2 .+ y.^2 .<
1.0)/n
end

@time calc_pi(10_000_000)

 0.284697 seconds
(28 allocations: 1.641 KB)

@time calc_pi_normal(10_000_000)

1.167740 seconds
(7.49 k allocations: 688.223 MB,
52.57% gc time)

Using for loop rather than .* etc

1.105030 seconds
(10.00 M allocations: 915.528 MB,
18.67% gc time)

Wednesday, September 21, 16

Pkg.add("ParallelAccelerator") adds a lot of stuff
The first time running calc_pi takes a long time

Sample Using HPAT

37

using HPAT
@acc hpat function calc_pi(n)
 x = rand(n) .* 2.0 .- 1.0
 y = rand(n) .* 2.0 .- 1.0
 return 4.0 * sum(x.^2 .+ y.^2 .< 1.0)/n
end

Now can be run on machines supporting mpi

Wednesday, September 21, 16

38

Wednesday, September 21, 16

Source: http://www.slideshare.net/EhsanTotoni/hpat-presentation-at-juliacon-2016/1

