CS 696 Intro to Big Data: Tools and Methods Fall Semester, 2016 Doc 9 Parallel Computing Sep 22, 2016

Copyright ©, All rights reserved. 2016 SDSU \& Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Parallel Computing

Concurrent computing

Running multiple processes or threads on same processor

Processes or threads are time-sliced

Parallel computing

Running multiple processes on different processors

Processes in same program run at the same time on different processors

Scaling up

Adding more resources to a machine to allow it to handle larger tasks Memory
Disk space
Faster processor

Scaling out

Adding more machines/processors to handle larger tasks

Requires parallel programming

Julia Parallel Processing

Low level constructs

High level constructs

Runs on
Multicore processors
Clusters

Cluster management

Experimental Julia to C/C++ compilers from Intel Labs
Run Julia code 20 to 100 times faster than Spark
Spark claims to be 10 to 100 times faster than Hadoop

Julia Parallel Processing - Low Level

@spawn, @spawnat
Run code on separate/remote processor
@everywhere
Run a command on all processors
fetch
Obtain results from separate processor
put!
store a value on a separate processor

Adding 1 elementwise In parallel

addprocs(2)
workers()
procs()
remote $=$ @spawn rand(2,2)
fetch(remote)
result = @spawn 1 .+ fetch(remote)
fetch(result)
\# only have two cores
\# [2, 3]
\# [1, 2, 3]
\# RemoteRef\{Channel\{Any\}\}(2,1,3)
\#= [0.477549 0.193374;
$0.2507990 .0512077]$
\#[1.47755 1.19337;
$1.25081 .05121]$
$\mathrm{A}=\mathrm{rand}(\mathrm{n}, \mathrm{n})$
Aref = @spawn sum($\mathrm{A}^{\wedge} 2$) fetch(Aref)

Bref = @spawn sum(rand(n,n)^2) fetch(Bref)

You need to be aware what you are doing on each processor

Do you need to send A from P1 to P2?

```
function count_heads(n)
    c: : Int = 0
    for \(\mathrm{i}=1\) : n
        c += rand(Bool)
    end
    C
end
a = @spawn count_heads(100000000) On worker 5:
b = @spawn count_heads(100000000) function count_heads not defined on process 3
fetch(a)+fetch(b)
```

count_heads.jl
function count_heads(n)
c::Int $=0$
for $i=1: n$
$c+=$ rand(Bool)
end
c
end

Put count_heads.jl in Julia path

In Julia

```
require("count_heads")
a = @spawn count_heads(100000000)
b = @spawn count_heads(100000000)
fetch(a)+fetch(b)
```

High-level Parallel/Performance Constructs
@parallel

$$
\begin{aligned}
& \text { @parallel reducer for var = range } \\
& \text { body } \\
& \text { end }
\end{aligned}
$$

Divide the loop among worker processes

Each process accumulates results and used reducer to combine the results

Result is send back to master and reduce is used combine all results

```
addprocs(10)
@parallel (+) for k = 1:100_000
    rand(1)
end
```

Each worker will sum 10_000 random numbers

Master will sum up the 10 results

Assuming you have 10 processors

Computing Pi

Area $=\mathrm{pi} / 4$

Area of Square $=1$

Select random point in unit square

Probability that point is in the quarter Circle is (pi/4)/1 = pi/4

Select N random points in unit square
Let $\mathrm{K}=$ number of points in quarter circle
K should be about $\mathrm{N}^{*} \mathrm{pi} / 4$
$4 \mathrm{~K} / \mathrm{N}$ should be about pi

Computing Pi

rand(2)		
function findpi(n) inside $=0$	returns two random numbers between 0 and 1	
for $\mathrm{i}=1: n$		
$x, y=\operatorname{rand}(2)$		
$\begin{aligned} & \text { if }\left(x^{\wedge} 2+y^{\wedge} 2<=1\right) \\ & \text { inside }+=1 \end{aligned}$		
end	N	findpi(N)
end	I_000	3.148
4 *inside / n	100_000	3.15028
	100_000_000	3.14169832
	I_000_000_000	3.141595912

$$
\pi=3.1415926535897 \ldots
$$

Parallel Version

```
function parallel_findpi(n)
    inside = @parallel (+) for \(\mathrm{i}=1: \mathrm{n}\)
        \(x, y=r a n d(2)\)
        \(x^{\wedge} 2+y^{\wedge} 2<=1 ? 1: 0\)
    end
    4 * inside / n
end
```


findpi verses parallel_findpi

On Edora - Has 4 Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz processors addprocs(4)

Time to Run in Seconds

N	findpi(N)	parallel_findpi(N)	Speedup
I_000	0.000079	0.003326	0.02
$100 _000$	0.012105	0.06380	0.19
100_000_000	7.234	2.19617	3.29
I_000_000_000	72.36	18.660	3.88

Speedup

$T(1)$ = time for sequnetial program to run
$T(N)=$ time for parallel program to run on N processors
$\mathrm{S}(\mathrm{N})=$ speedup using N processors

$$
S(N)=T(1) / T(N)
$$

Timings on JuliaBox - 16 CPU

Time to Run in Seconds

N	findpi(N)	parallel_findpi(N) I6 processor	parallel_findpi(N) 8 processor
$100 _000$	0.009	0.009	0.010
I_000_000	0.083	0.030	0.069
$10 _000 _000$	0.813	0.234	0.216
I00_000_000	8.143	I .656	2.133
I_000_000_000	82.219	14.663	20.762
$10 _000 _000 _000$		125.585	246.524

Speedup

$100 _000$	0.009	1	0.9
I_000_000	0.083	2.8	1.2
$10 _000 _000$	0.813	3.5	3.8
$100 _000 _000$	8.143	4.9	3.8
I_000_000_000	82.219	5.6	4.0
$10 _000 _000 _000$		6.5	3.3

Amdahl's Law

Ts = time of task that is inherently sequential

Tp = time of task that can be parallelized
$T(1)$ = time for sequnetial program to run
$T(N)=$ time for parallel program to run on N processors
$S(N)=$ speedup using N processors

$$
T(1)=T s+T p
$$

$T(N)=T s+T p / N \quad$ Assuming we can parallelize perfectly

$$
\begin{aligned}
S(N) & =T(1) / T(N) \\
& =(T s+T p) /(T s+T p / N)
\end{aligned}
$$

Amdahl's Law

$S(N)=(T s+T p) /(T s+T p / N)$
if Ts $=0$ and we can perfectly parallelize the task we get
$\mathrm{S}(\mathrm{N})=\mathrm{Tp} /(\mathrm{Tp} / \mathrm{N})=\mathrm{N}$

Ts is never zero
Perfect parallization is not possible

So

$$
S(N)<N
$$

Amdahl's Law

Theory

$$
\begin{aligned}
& S(N)=(T s+T p) /(T s+T p / N) \\
& S(N)<N
\end{aligned}
$$

Practice

It is possible for $S(N)>N$

How
Single processor may not be able to fit data in physical memory Paging will significally slow sequenial program down N processors can have more total memory that single processor So parallel version may not have paging issues

More Realistic Amdahl's Law

Ts = time of task that is inherently sequential

Tp = time of task that can be parallelized

Tis = Average additional serial time doing interprocessor communication
Assume each processor takes same amount of time
Total time is N^{*} Tis

Tip - Average additional time by each processor doing set up, idle time, etc.
$S(N)=(T s+T p) /\left(T s+N^{*} T i s+T i p+T p / N\right)$
$S(N)=(T s+T p) /\left(T s+N^{*} T i s+T i p+T p / N\right)$

Ts = Tip $=0$
Tp = 10_000
Tis $=20=0.2 \%$ * $T p$

Monte Carlo Method

Uses repeated random sampling to obtain numerical results

Used mainly in:

Optimization
Numerical Integration
Generating draws from probability distribution

Embarrassingly (Pleasingly) Parallel

Little or no effort needed to separate problem into parallel tasks

Little or no communication needed between parallel tasks

Searching a web page that contains key words

These are the types of problems that can be

Solved using Hadoop \& Spark

Compilers can detect some forms and parallelize for you

Distributed Arrays - DistributedArrays.jI

Distributes Arrays among processors

Can distribute arrays from master to slaves

Can create arrays on slaves

Master can work arrays on slaves

Distributing Data

Creating a Distributed Array

```
dzeros(100,100,10)
dones(100,100,10)
drand(100,100,10)
drandn(100,100,10)
dfill(x,100,100,10)
```


Using DistributedArrays.jl

onmaster $=$ rand $(100,100)$
distributed $=$ distribute(onmaster)
sum(distributed)
heads $=\operatorname{map}(x->x>0.5$, distributed $)$
\#distribute onmaster to the workers
\# compute sum locally on workers \# combine the result on master
\# apply map on workers
\$ return result on master

SharedArrays

Each worker has access to the array

```
addprocs(3)
    3-element Array{Int64,1}:
    2
    3
    4
S = SharedArray(Int, (3,4), init = S -> S[Base.localindexes(S)] = myid())
```

 \(3 \times 4\) SharedArray\{Int64,2\}:
 2234
 2334
 2344

ClusterManagers

Launches worker processes in a cluster environment
Managing events during the lifetime of each worker
Providing data transport

Julia Cluster

The initial Julia process, also called the master, is special and has an id of 1
Only the master process can add or remove worker processes
All processes can directly communicate with each other

Types of Cluster Managers

LocalManager,
used when addprocs() or addprocs(np::Integer) are called

SSHManager
used when addprocs(hostnames::Array) is called with a list of hostnames

Remote hosts need passwordless login enabled

ArrayFire.jl

GPU computing
using ArrayFire
$a=\operatorname{rand}(10,10)$
on_gpu = AFArray(a)
result_on_gpu $=($ on_gpu +1$) / 5$
result_on_cpu = Array(result_on_cpu)

HPAT.jl, ParalleIAccelerator.jl

Intel Labs projects to provide high level efficient \& fast parallel code

ParallelAccelerator.jl
Converts Julia code to C/C++ Imports C/C++ code into Julia

Supports subset of Julia

Uses implicit parallelism in map, reduce, comprehension
.+, .- , .* , ./ converted into data-parallel map operations

HPAT.jI
Using ParallelAccelerator converts Julia code to
C/C++ \& MPI calls for distributed computing

Sample Using ParallelAccelertor

function calc_pi_normal(n)
$x=\operatorname{rand}(n)$.* 2.0 - 1.0
$\mathrm{y}=\operatorname{rand}(\mathrm{n})$.* 2.0 . 1.0
return 4.0^{*} sum(x.^2 .+ y. ${ }^{\wedge} 2 .<$
end
@time calc_pi(10_000_000)
0.284697 seconds
(28 allocations: 1.641 KB)
@time calc_pi_normal(10_000_000)
1.167740 seconds
(7.49 k allocations: 688.223 MB, 52.57% gc time)

Using for loop rather than .* etc
1.105030 seconds
(10.00 M allocations: 915.528 MB, 18.67% gc time)

Sample Using HPAT

using HPAT

@acc hpat function calc_pi(n)
$x=\operatorname{rand}(n)$.* 2.0 .- 1.0
$y=\operatorname{rand}(n)$.* 2.0 .- 1.0
return 4.0 * $\operatorname{sum}\left(x .{ }^{\wedge} 2 .+y . \wedge 2 .<1.0\right) / n$
end

Now can be run on machines supporting mpi

HPAT vs. Spark

- Spark ■HPAT

Cori at NERSC/LBL 64 nodes (2048 cores)

16

