
CS 5696 Functional Design & Programming
Spring Semester, 2015

Assignment 1
© 2015, All Rights Reserved, SDSU & Roger Whitney

 San Diego State University -- This page last updated 8/30/15

Due Sept 9 11:59 PM
Version 1.1

You can use any static method in the java.lang.Math class in this assignment. Each problem is
worth 10 points. In problem 1-5 make sure that your function names and arguments are as
given in the problem description as unit tests will be used to validate your answers. Each ques-
tion asks you to write a function. You can write more that one function if you find it useful.

1. We can use a map to describe an item on a restaurant bill. For example {:name “Green Tea
Ice Cream” :price 2.5 :quantity 2}. We can represent the bill as a vector of maps. Write a
Clojure function bill-total whose one argument is a vector of such maps and returns the
total of the bill. For example

(def bill [{:name “Green Tea Ice Cream” :price 2.5 :quantity 2}
! {:price 1.0 :name “Sticky Rice” :quantity 1}])
(bill-total bill) returns 6.0

2. Often people will order additional times. Write a function add-to-bill that accepts two argu-
ments. The first is a bill as above. The second argument is a vector of additional items. The
method returns a new bill with the additional items. For example:

(def items [{:price 2.1 :name “Mango” :quantity 1} { :quantity 1:price 1.0 :name “Sticky
Rice” }

(add-to-bill bill items) returns [{:name “Green Tea Ice Cream” :price 2.5 :quantity 2}
! {:price 1.0 :name “Sticky Rice” :quantity 2}
! {:price 2.1 :name “Mango” :quantity 1}]

We can represent a polynomial of one variable as a vector of vectors. For example x2 + 3*x - 1
can be represented by [[1 2] [3 1] [-1 0]]. Here the first element of the inner vector is the coeffi-
cient and the second element is the exponent of variable.

3. Write a Clojure function, make-poly, with one argument, a polynomial in the form given
above. The function returns a function, call it polynomial. This polynomial function accepts
one argument, a number, and returns the value of the polynomial evaluated on the input.
So we will get

(def example (poly-maker [[1 2] [3 1] [-1 0]]))
(example 2) will return 9.0
(map example [0 1 2 3 4 5]) will return (-1.0 3.0 9.0 17.0 27.0 39.0)

4. Write a function differentiate that has one argument, a polynomial in the above format. The
function returns the derivative of the polynomial. So

(differentiate [[1 2] [3 1] [-1 0]]) returns [[2 1] [3 0]]
(differentiate [[3 4] [5 2] [6 1]]) returns [[12 3] [10 1] [6 0]]

5. Given a polynomial, call it p(x), we want to find a value of x where p(x) = 0. That is x is a
root of the polynomial. Let p’(x) be the derivative of p(x). Select a value x0 and let x1 = x0 -
p(x0)/p’(x0), x2 = x1 - p(x1)/p’(x1), ... , xn - p(xn-1)/p’(xn-1). In most cases x0, x1, x2, x3, ... xn
converges to a root of the polynomial. So to find a root of the polynomial compute x0, x1,
x2, x3, ... xn until | xn - xn-1 | is small. Then xn is a good approximate of a root of the poly-
nomial. Write a Clojure function find-root with three arguments. The first is float that is how
small we want | xn - xn-1 | to be. The second is polynomial vector that we want to find th e
root of. The third argument is a guess for x0. The function find-root return xn. For example

(def poly1 [[1 2] [2 1] [1 0]])!! ;(x+1)(x+1) so root = -1
(def poly2 [[1 2] [-1 0]])! ! ;(x+1)(x-1) so roots are 1, -1
(def poly3 [[6 2] [1 1] [-1 0]])! ;(2x+1)(3x-1) so roots are -1/2 and 1/3

(find-root 0.0001 poly1 10) returns -0.999832
(find-root 0.0001 poly2 10) returns 1.000005
(find-root 0.0001 poly2 -10) returns -1.000005
(find-root 0.0001 poly3 10) returns 0.3333333

6. A common example in Object-Oriented books is a Bank Account Class. Write Clojure func-
tion(s) that allow you to deposit or withdrawal money from a bank account.

What to Turn in

Answer all questions in a single Clojure file (file extension .clj). Use a comment to separate
and label each questions. Place the questions in order in your file. Zip up the file and turn in
your zipped file using assignment 1 link on the course portal.

Late Penalty

An assignment turned in 1-7 days late, will lose 5% of the total value of the assignment per day
late. The eight day late the penalty will be 40% of the assignment, the ninth day late the pen-
alty will be 60%, after the ninth day late the penalty will be 90%. Once a solution to an assign-
ment has been posted or discussed in class, the assignment will no longer be accepted. Late
penalties are always rounded up to the next integer value.

Document History

8/30/2015 Version 1.1
Corrected typo in problem 5. Replaced x1 = x0 - p(x0)/p(x0), x2 = x1 - p(x1)/p(x1), ... , xn - p(xn-
1)/p(xn-1) with x1 = x0 - p(x0)/p’(x0), x2 = x1 - p(x1)/p’(x1), ... , xn - p(xn-1)/p’(xn-1)

