
CS 596 Functional Programming and Design
Fall Semester, 2014

Doc 22 Monads & Design Patterns
Dec 2, 2014

Copyright ©, All rights reserved. 2014 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this 
document.

Tuesday, December 2, 14



AppsFlyer

2

Mobile Analytics Company 

Based in San Francisco

2 Billion events per day

Traffic double in 3 months

Grew from 6 to 50 people past year

Technologies used
Redis, Kafka, Couchbase, CouchDB, Neo4j
ElasticSearch, RabbitMQ, Consul, Docker, Mesos
MongpDB, Riemann, Hadoop, Secor, Cascalog, AWS

Tuesday, December 2, 14



AppsFlyer - Python Based

3

Started code base in Python

After two years python could not handle the traffic

Problems caused by
String manipulations
Python memory management

Tuesday, December 2, 14



Their options

4

Rewrite parts in C & wrap in Python

Rewrite in programming language more suitable for data proccessing

Wanted to try Functional Programming

Tuesday, December 2, 14



Scala vs. OCaml vs. Haskell vs. Clojure

5

Scala
Functional & Object Oriented 
They wanted pure Functional

OCaml
Smaller community
Only one thread runs at a time even on multicore

Haskell
Monads made us cringe in fear

Clojure
Runs on JVM
Access to mutable state if needed
Now have 10 Clojure engineers

Tuesday, December 2, 14



Monads

6

What are they?

Why do they make engineers cringe in fear?

Tuesday, December 2, 14



7

Monoids & Monads

Tuesday, December 2, 14



8

Monoid

Binary Function
Two parameters

Parameters and returned value have same type

Identity value

Associatively

Integer +

2 + 1 

2 + 0

(2+3) + 4 = 2 + (3 + 4)

Tuesday, December 2, 14



9

Monoid

Binary Function
Two parameters

Parameters and returned value - same type

Identity value

Associatively

Java String concat

“hi”.concat(“ Mom”); 

“hi”.concat(“”)

“hi”.concat(“Mom”.concat(“!”))
“hi”.concat(“Mom”).concat(“!”)

Tuesday, December 2, 14



10

Monoid

Binary Function
Two parameters

Parameters and returned value - same type

Identity value

Associatively

Sets union 

“hi”.concat(“ Mom”); 

“hi”.concat(“”)

“hi”.concat(“Mom”.concat(“!”))
“hi”.concat(“Mom”).concat(“!”)

Tuesday, December 2, 14



Monoid

11

Associative binary function F: X*X -> X
that has an identity

Tuesday, December 2, 14



Haskell

12

class Monoid m where  
    mempty :: m  
    mappend :: m -> m -> m  
    mconcat :: [m] -> m  
    mconcat = foldr mappend mempty 

Tuesday, December 2, 14



Monad - Some Motivation

13

Exceptions
Interrupt program flow

(filter foo [a b c d e f g h])

Tuesday, December 2, 14



Swift - optionals

14

let possibleNumber = "123"
let convertedNumber = possibleNumber.toInt()

if (convertedNumber) 
 println( convertedNumber! )

Tuesday, December 2, 14



Pyramid Of Doom

15

let b = foo(a)
if b

let c = bar(b)
if c

let d = fooBar(c)
if d

let e = barFoo(e)
if e

return e!
return “No e”

return “No d”
return “No c”

return “No b”

Tuesday, December 2, 14



Clojure-like example

16

(-> some-collection
foo
bar
fooBar
barFoo)

What if one of the functions (foo, etc)
returns an optional?

All the rest of the functions need handle them

Tuesday, December 2, 14



Haskell Monad

17

Contains a context & four functions

return
return :: a -> m a
Takes a value and wraps in a monad

bind
(>>=) :: m a -> (a -> m b) -> m b
Take a 

monad
function that requires a regular value and returns a monad
Applies the function to the monad

Tuesday, December 2, 14



Haskell Monad

18

Contains a context & four functions

>>
(>>) :: m a -> m b -> m b
First argument is ignored

Error

Tuesday, December 2, 14



Monad Laws

19

Tuesday, December 2, 14



What are Monads used for?

20

In Haskell all functions are pure

Monad contexts can have side effects

All I/O in Haskell is done in monads

Monads allow you to compose computational steps together

Tuesday, December 2, 14



Monads in Clojure

21

let
for
->
->>

Tuesday, December 2, 14



Monads Tutorial For Clojure Programmers

22

http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/

Tuesday, December 2, 14

http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/
http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/


23

Design Patterns

Tuesday, December 2, 14



The Functional Pattern Joke

24

OO Pattern Functional Equivalent

Adapter Functions

Bridge Functions

Chain of responsibility Functions

Command Functions

Composite Functions

Decorator Just Functions

Facade Functions

Flyweight Functions

Mediator Functions

Observer Functions

Strategy Functions

Template method Still Just Functions

Tuesday, December 2, 14



Memento

25

undo, rollbacks
Orginator
setMemento( Menmento m)
createMemento()
state

Memento
getState()
setState()
state

Caretaker
mementos

state=m->getState()

return new Memento( state )

Only originator:

Can access Memento’s get/set state methods
Create Memento

Store an object's internal state, so the object can be restored to this state later 
without violating encapsulation

Tuesday, December 2, 14



Copying Issues

26

aDoor
room1
room2
size 5

aRoom aChair

aTableaRoom

Shallow Copy

Shallow Copy Verse Deep Copy

Original Objects

Tuesday, December 2, 14



Memento Pattern & Functional Programming

27

Immutable data
No need to copy the data
Just save current data 

(def state-history (atom []))

(defn add-state
  [state]
  (swap! state-history conj state))

(defn previous-state
  []
  (let [last-state (last @state-history)]
    (swap! state-history pop)
    last-state))

Tuesday, December 2, 14



Command Pattern

28

Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Encapsulates a request as an object

Tuesday, December 2, 14



Example

29

Button in a GUI

When press button remove the current selected row of table

Tuesday, December 2, 14



Command Class

30

public class RemoveRowCommand extends Command {
private Table target;

public RemoveRowCommand(Table target) {
this.target = target;

}

public execute() {
int selection = target.getSelection();
target.removeRow(selection);

}
}

Tuesday, December 2, 14



Using the Command

31

Button removeSelection = new Button();
Command removeRow = new RemoveRowCommand(ourTable);
removeSelection.action(removeRow);

Button class is written to call execute when button is pressed

Tuesday, December 2, 14



Clojure Example

32

(def button 
  (seesaw/button 
   :text "Remove Selection"
   :listen [:action (fn [event](

(let [selectedRow (seesaw/selection ourTable)]
(seesaw/remove-at! ourTable selectedRow))]))

Tuesday, December 2, 14



More General

33

(defn removeRow!
[table event]
(let [selectedRow (seesaw/selection table)]

(seesaw/remove-at! table selectedRow)))

(def button 
  (seesaw/button 
   :text "Remove Selection"
   :listen [:action (partial removeRow ourTable)]))

Tuesday, December 2, 14



Command Pattern Supports Undo

34

Modify class
Add undo method

Keep stack of past commands

Undo
Pop the stack
Call undo on element removed from stack

Tuesday, December 2, 14



35

public class RemoveRowCommand extends Command {
private Table target;
private int rowIndex;
private Row removedRow;

public RemoveRowCommand(Table target) {
this.target = target;

}

public void execute() {
rowIndex = target.getSelection();
removedRow = target.getRow(rowIndex);
target.removeRow(rowIndex);

}

public void undo() {
if (removedRow == nil) return;
target.addRow(removedRow, rowIndex);
removedRow = nil;

}
}

Tuesday, December 2, 14



36

Button removeSelection = new Button(“Remove Selection);
Command removeRow = new RemoveRowCommand(ourTable);
removeSelection.action(removeRow);
Button undoRemove = new Button(“Undo”); // needs work here
undo.action(removeRow)

Tuesday, December 2, 14



Converting Objects to Clojure data

37

Class Map

Field name keyword as key in map

new Person("Sachin", "Tendulkar", 40);

{:first-name "Sachin"
 :last-name "Tendulkar"
 :age 40
  :phone-numbers {}}

Tuesday, December 2, 14



Undo - Using maps & multimethods

38

Store the data needed for undo in a map

Use multimethod to perform undo

Tuesday, December 2, 14



Undo - Add Subtract Example

39

Data needed to undo addition
Current value
Value added

{:command :add :value 10 :amount 2}

Data needed to undo subtractiom
Current value
Value subtracted

{:command :subtraction :value 10 :amount 2}

Tuesday, December 2, 14



The Multimethod

40

(defmulti undo :command)

(defmethod undo :add
  [{:keys [value amount]}]
  (- value amount))

(defmethod undo :subtract
  [{:keys [value amount]}]
  (+ value amount))

(def example 
 {:command :add :value 10 :amount 2})

(undo example)

Tuesday, December 2, 14



Adding the Table

41

(defmulti undo :command)

(defmethod undo :add
  [{:keys [value amount]}]
  (- value amount))

(defmethod undo :subtract
  [{:keys [value amount]}]
  (+ value amount))

(defmethod undo :remove-row
  [{:keys [table row-index row]}]
  (seesaw/insert-at! table row row-index))

Tuesday, December 2, 14



Updated Row

42

(defn removeRow!
[table event]
(let [selected-index (seesaw/selection table)
       selected-row (seesaw/value-at selected-index)]

(seesaw/remove-at! table selectedRow)
(save-command {:command :remove-row
     :row selected-row
     :row-index selected-index)))

(def button 
  (seesaw/button 
   :text "Remove Selection"
   :listen [:action (partial removeRow ourTable)]))

Tuesday, December 2, 14



Command History

43

(def command-history (atom []))

(defn save-command
  [command]
  (swap! command-history conj command))

(defn previous-command
  []
  (let [last-command (last @command-history)]
    (swap! command-history pop)
    last-command))

Tuesday, December 2, 14



Memento Pattern

44

Idea - save current state

OO implementation Functional implementation

Copy objects 
Deal with information hiding

Just save current state

Tuesday, December 2, 14



Command Pattern

45

Idea: Save data needed to perform an operation

OO Implementation

Separate class for data

Interface for executing method

Functional implementation

Use map for the data

Tuesday, December 2, 14



What is the Pattern?

46

The idea?

The implementation?

What is important?

Tuesday, December 2, 14



Iterator Pattern

47

Provide a way to access the elements of a collection sequentially without 
exposing its underlying representation

LinkedList<Strings> strings =  new LinkedList<Strings>();

for (String element : strings) {
 if (element.size % 2 == 0)
  System.out.println(element);
}

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 0)

 System.out.println(element);          
 } 
}

Tuesday, December 2, 14



Iterator Pattern - Clojure

48

sequences

Tuesday, December 2, 14



Strategy Pattern

49

defines a family of algorithms,
encapsulates each algorithm, and
makes the algorithms interchangeable within that family.

Tuesday, December 2, 14



Java Example

50

class OrderableList {
 private Object[ ] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
  orderer = x;
 }

   public void add(Object element) {
      elements = orderer.add(elements,element);
   }

Tuesday, December 2, 14



Clojure Example

51

(sort-by last {:b 1 :c 3 :a 2})

Just pass in a function

Tuesday, December 2, 14


