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Bank Account and Withdrawal
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Type of changes

New types of customers

Change fee structure

Change when to apply fee
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BankAccount>>withdrawalNormal: aCurrency
| newBalance |
newBalance := balance - aCurrency.
newBalance isNegative ifTrue: [

balance := balance - 5.0 asCurrency.
etc.

BankAccount>>withdrawalPreferred: aCurrency
| newBalance |
newBalance := balance - aCurrency.
newBalance < -1000 asCurrency ifTrue: [

balance := balance - 3.0 asCurrency.
etc.
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Adding New Types of Customers
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Requires 

New method in BankAccount

Callers need to be changed to call new method
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BankAccount>>withdrawal: aCurrency
| newBalance |
newBalance := balance - aCurrency.
balanceLimit := self isNormal 

ifTrue: [0 asCurrency]
ifFalse: [-1000.0 asCurrency].

overDraftFee := self isNormal
ifTrue: [0 asCurrency]
ifFalse: [-5.0 asCurrency].

newBalance < balanceLimit ifTrue: [
balance := balance - overDraftFee.
etc.
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New Customer types, Fee & Limit Changes 
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Require
Editing the method

Other classes still call same method

Tuesday, November 26, 13



8

BankAccount>>withdrawal: aCurrency
| newBalance |
newBalance := balance - aCurrency.

newBalance < balanceLimit ifTrue: [
balance := balance - overDraftFee.
etc.

Using instance variables for balanceLimit & overDraftFee
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New Customer types, Fee & Limit Changes 
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Just Data

Types & amounts could be read from file/database

Possible to 
Create new customer types
Change fees
Change limits

without changing your code!
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Second Example
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SomeClass>>someMethod
blah
transaction = 'Withdrawal' ifTrue:[ account withdrawal: amount].
blah.
transaction = 'Deposit' ifTrue:[ account deposit: amount].
etc

SameClassOrDifferentClass>>someOtherMethod
blah
transaction = 'Withdrawal' ifTrue:[ amount := data at: 3].
blah.
transaction = 'Deposit' ifTrue:[ amount := data at: 4].
etc
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Adding new Transactions
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Require 
Find all methods using transactions

Modifying each method
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Hinge - Use Objects & Polymorphism 

13

SomeClassOrDifferentClass>>someOtherMethod
amount := transactionObject amount

SomeClassOrDifferentClass>>someOtherMethod
blah
transaction = 'Withdrawal' ifTrue:[ amount := data at: 3].
blah.
transaction = 'Deposit' ifTrue:[ amount := data at: 4].
etc

Tuesday, November 26, 13



Some Software hinges
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Information Hiding
Encapsulation 
Little pieces
Separation of Concerns
Abstractions
Once and only once
Polymorphism
Data files/databases
Design Patterns
Meta-data
Meta-Programming
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Information Hiding & Encapsulation 
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Example 1 - Methods/functions

Example 2 - Currency

Moving an operation in to separate method/function

Isolates changes of operation to function

Some Currency classes have errors - need change
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Little pieces
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Smaller pieces if done well isolates more operations
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Separation of Concerns
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Like little pieces divides code to parts that can be changed independently
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BankAccount>>fromTransactions: aStringOrFilename

 | stringTransactions |
 stringTransactions := aStringOrFilename asFilename contentsOfEntireFile.
 self addTransactions: stringTransactions asTransactions.

String>>asTransactions

 ^self lines collect: [:each | BankTransaction from: each]

String>>lines

 ^self tokensBasedOn: Character cr.
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BankTransaction class>>from: aString

 | tokens tokensCleaned type |
 tokens := aString tokensBasedOn: Character tab.
 tokensCleaned := tokens collect: [:each | each trimSeparators].
 type := (tokensCleaned at: 3) asLowercase.
 self subclasses
  do: [:each | each type = type ifTrue: [^each components: tokensCleaned]]

BankTransaction class>>components: anArray

 ^super new setComponents: anArray
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BankTransaction >>setComponents: anArray

 self subclassResponsibility
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BankTransaction Subclasses
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Deposit class>>type

 ^'deposit'

NewAccount class>>type

 ^'newaccount'

Withdrawal class>>type

 ^'withdrawal'
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How to Add New Transaction Types
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Create subclass of BankTransaction

Subclass implements:

Class method 'type'

Instance method 'setComponents:'

BankAccount does not change

Code Reading transaction files does not change
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Hinges and Design Decisions 
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Previous slides hard codes file structure across multiple classes/methods 

Carriage return
tab

Solution is brittle regard to file format

Having an I/O related class would be better hinge
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Polymorphism
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BankAccount>>deposit: aTransaction
blah

aTransaction type = 'check' ifTrue: [blah ].
aTransaction type = 'cash' ifTrue: [blah].

Adding new types of transaction requires changing this method

Tuesday, November 26, 13



Polymorphism
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BankAccount>>deposit: aTransaction

newBalance := balance + aTransaction balanceAmount.
newAvailableBalance := availableBalance + 

aTransaction availableBalanceAmount.

Adding new types of transaction does not requires changing this method

Unless new trasaction requires more complex operation
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More Complex Polymorphism
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BankAccount>>process: aTransaction

 aTransaction evaluteOn: self.

Deposit>>evaluteOn: aBankAccount

 aBankAccount deposit: self

Withdrawal>>evaluteOn: aBankAccount

 aBankAccount withdrawal: self

Cancel>>evaluteOn: aBankAccount
 
 originalTransaction := aBankAccount transactionAt: idToCancel.
 originalTransaction cancel.
 aBankAccount withdrawal: self
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Business Rules
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Some businesses frequently change rules/deals

Buy two X and get third X for 1/2 price

20 cent coffee day

Don't have time to rewrite code

Need to move business logic into data
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