
CS 535 Object-Oriented Programming & Design
Fall Semester, 2013

Doc 17 - Hinges
Nov 26 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Tuesday, November 26, 13

Hinges

2

Tuesday, November 26, 13

http://en.wikipedia.org/wiki/File:Hamburgerpaumelle.JPG

Bank Account and Withdrawal

3

Type of changes

New types of customers

Change fee structure

Change when to apply fee

Tuesday, November 26, 13

4

BankAccount>>withdrawalNormal: aCurrency
| newBalance |
newBalance := balance - aCurrency.
newBalance isNegative ifTrue: [

balance := balance - 5.0 asCurrency.
etc.

BankAccount>>withdrawalPreferred: aCurrency
| newBalance |
newBalance := balance - aCurrency.
newBalance < -1000 asCurrency ifTrue: [

balance := balance - 3.0 asCurrency.
etc.

Tuesday, November 26, 13

Adding New Types of Customers

5

Requires

New method in BankAccount

Callers need to be changed to call new method

Tuesday, November 26, 13

6

BankAccount>>withdrawal: aCurrency
| newBalance |
newBalance := balance - aCurrency.
balanceLimit := self isNormal

ifTrue: [0 asCurrency]
ifFalse: [-1000.0 asCurrency].

overDraftFee := self isNormal
ifTrue: [0 asCurrency]
ifFalse: [-5.0 asCurrency].

newBalance < balanceLimit ifTrue: [
balance := balance - overDraftFee.
etc.

Tuesday, November 26, 13

New Customer types, Fee & Limit Changes

7

Require
Editing the method

Other classes still call same method

Tuesday, November 26, 13

8

BankAccount>>withdrawal: aCurrency
| newBalance |
newBalance := balance - aCurrency.

newBalance < balanceLimit ifTrue: [
balance := balance - overDraftFee.
etc.

Using instance variables for balanceLimit & overDraftFee

Tuesday, November 26, 13

New Customer types, Fee & Limit Changes

9

Just Data

Types & amounts could be read from file/database

Possible to
Create new customer types
Change fees
Change limits

without changing your code!

Tuesday, November 26, 13

10

Tuesday, November 26, 13

http://en.wikipedia.org/wiki/File:Hamburgerpaumelle.JPG

Second Example

11

SomeClass>>someMethod
blah
transaction = 'Withdrawal' ifTrue:[account withdrawal: amount].
blah.
transaction = 'Deposit' ifTrue:[account deposit: amount].
etc

SameClassOrDifferentClass>>someOtherMethod
blah
transaction = 'Withdrawal' ifTrue:[amount := data at: 3].
blah.
transaction = 'Deposit' ifTrue:[amount := data at: 4].
etc

Tuesday, November 26, 13

Adding new Transactions

12

Require
Find all methods using transactions

Modifying each method

Tuesday, November 26, 13

Hinge - Use Objects & Polymorphism

13

SomeClassOrDifferentClass>>someOtherMethod
amount := transactionObject amount

SomeClassOrDifferentClass>>someOtherMethod
blah
transaction = 'Withdrawal' ifTrue:[amount := data at: 3].
blah.
transaction = 'Deposit' ifTrue:[amount := data at: 4].
etc

Tuesday, November 26, 13

Some Software hinges

14

Information Hiding
Encapsulation
Little pieces
Separation of Concerns
Abstractions
Once and only once
Polymorphism
Data files/databases
Design Patterns
Meta-data
Meta-Programming

Tuesday, November 26, 13

Information Hiding & Encapsulation

15

Example 1 - Methods/functions

Example 2 - Currency

Moving an operation in to separate method/function

Isolates changes of operation to function

Some Currency classes have errors - need change

Tuesday, November 26, 13

Little pieces

16

Smaller pieces if done well isolates more operations

Tuesday, November 26, 13

Separation of Concerns

17

Like little pieces divides code to parts that can be changed independently

Tuesday, November 26, 13

18

BankAccount>>fromTransactions: aStringOrFilename

 | stringTransactions |
 stringTransactions := aStringOrFilename asFilename contentsOfEntireFile.
 self addTransactions: stringTransactions asTransactions.

String>>asTransactions

 ^self lines collect: [:each | BankTransaction from: each]

String>>lines

 ^self tokensBasedOn: Character cr.

Tuesday, November 26, 13

19

BankTransaction class>>from: aString

 | tokens tokensCleaned type |
 tokens := aString tokensBasedOn: Character tab.
 tokensCleaned := tokens collect: [:each | each trimSeparators].
 type := (tokensCleaned at: 3) asLowercase.
 self subclasses
 do: [:each | each type = type ifTrue: [^each components: tokensCleaned]]

BankTransaction class>>components: anArray

 ^super new setComponents: anArray

Tuesday, November 26, 13

20

BankTransaction >>setComponents: anArray

 self subclassResponsibility

Tuesday, November 26, 13

BankTransaction Subclasses

21

Deposit class>>type

 ^'deposit'

NewAccount class>>type

 ^'newaccount'

Withdrawal class>>type

 ^'withdrawal'

Tuesday, November 26, 13

How to Add New Transaction Types

22

Create subclass of BankTransaction

Subclass implements:

Class method 'type'

Instance method 'setComponents:'

BankAccount does not change

Code Reading transaction files does not change

Tuesday, November 26, 13

Hinges and Design Decisions

23

Previous slides hard codes file structure across multiple classes/methods

Carriage return
tab

Solution is brittle regard to file format

Having an I/O related class would be better hinge

Tuesday, November 26, 13

Polymorphism

24

BankAccount>>deposit: aTransaction
blah

aTransaction type = 'check' ifTrue: [blah].
aTransaction type = 'cash' ifTrue: [blah].

Adding new types of transaction requires changing this method

Tuesday, November 26, 13

Polymorphism

25

BankAccount>>deposit: aTransaction

newBalance := balance + aTransaction balanceAmount.
newAvailableBalance := availableBalance +

aTransaction availableBalanceAmount.

Adding new types of transaction does not requires changing this method

Unless new trasaction requires more complex operation

Tuesday, November 26, 13

More Complex Polymorphism

26

BankAccount>>process: aTransaction

 aTransaction evaluteOn: self.

Deposit>>evaluteOn: aBankAccount

 aBankAccount deposit: self

Withdrawal>>evaluteOn: aBankAccount

 aBankAccount withdrawal: self

Cancel>>evaluteOn: aBankAccount

 originalTransaction := aBankAccount transactionAt: idToCancel.
 originalTransaction cancel.
 aBankAccount withdrawal: self

Tuesday, November 26, 13

Business Rules

27

Some businesses frequently change rules/deals

Buy two X and get third X for 1/2 price

20 cent coffee day

Don't have time to rewrite code

Need to move business logic into data

Tuesday, November 26, 13

