
CS 535 Object-Oriented Programming & Design
Fall Semester, 2013

Doc 14 Some Building Blocks 
Oct 22 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this 
document.

Tuesday, October 22, 13



References

2

Domain Specific Languages, http://en.wikipedia.org/wiki/Domain-
specific_programming_language

Tuesday, October 22, 13



Example - Turtle Graphics

3

Turtle Graphics - used help teach programming

Program Turtle to 
Move across screen
Draw patterns

Operations
move
turn
penUp
penDown

Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10

Tuesday, October 22, 13



Assume We Have Turtle class

4

Displays small turtle on screen

Responds to basic command
Move
Turn
penUp
penDown

Draws line when pen is down and Turtle moves

Tuesday, October 22, 13



How to parse Turtle Program

5

As String

lines := turtleProgram tokensBasedOn: Character cr.
lines do: [:aLine | | command amount direction |

parts := aLine tokensBasedOn: Character space.
command :=  parts first.
command = 'move' | 'turn'

ifTrue: [
amount := (parts at: 2) asNumber.
command = 'turn' ifTrue: [

direction := parts last.]].
command = 'turn' ifTrue: [turtle turn: amount direction: direction].
command = 'move' ifTrue: [turtle move: amount]. 
command = 'penDown' ifTrue: [turtle penDown].
command = 'penUp' ifTrue: [turtle penUp].

turtleProgram := 'penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10'.

Tuesday, October 22, 13



New Commands

6

color  
One argument - a color

circle  
One argument - radius

Tuesday, October 22, 13



Building Block - TurtleStream

7

Possible Operations

nextToken
nextCommand
nextArgument

Tuesday, October 22, 13



Executing Turtle Program/Command

8

TurtleInterpreter class
Responsibilities 

Analyze and execute turtle programs

Collaborations
Turtle 
TurtleStream

Turtle class
Responsibilities

Draw on screen
Perform operations

Tuesday, October 22, 13



TurtleInterpreter

9

Instance variables
turtle - instance of Turtle
source - instance of TurtleStream

TurtleInterpreter>>on: aProgramString
Initializes turtle and source

turtle := Turtle new.
source := TurtleStream on: aProgramString

TurtleInterpreter>>evaluate
[source atEnd]

whileFalse: [self evaluateCommand]

Tuesday, October 22, 13



Simple Solution

10

TurtleInterpreter>>evaluateCommand
| command |
command := source nextCommand.
command asLowercase = 'penUp'

ifTrue: [^self penUp].
command asLowercase = 'move'

ifTrue: [^self move].
command asLowercase = 'turn'

ifTrue: [^self turn].
etc.

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move
| distance |
distance := source nextArgument.
turtle move: distance

TurtleInterpreter>>turn
| amount direction |
amount := source nextArgument.
direction := source nextArgument.
turtle 

turn: amount 
direction: direction

Tuesday, October 22, 13



What Have We Gained?

11

Tuesday, October 22, 13



Bigger Building Blocks - TurtleCommands

12

Read line of program

Give line of program to TurtleCommand class

TurtleCommand parses line

Some methods

isMove
isTurn
amount
direction

Tuesday, October 22, 13



Command Solution

13

TurtleInterpreter>>evaluateCommand
| command  |
line := source nextLine.
command := TurtleCommand on: line
command isPenUp

ifTrue: [^self penUp].
command isMove

ifTrue: [^self move: command].
command isTurn

ifTrue: [^self turn: command].
etc.

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move: command
turtle move: command amount.

TurtleInterpreter>>turn: command
turtle 

turn:  command amount 
direction: command direction

Tuesday, October 22, 13



What Have We Gained?

14

Who knows the syntax for command?

Who has to change if syntax changes

Tuesday, October 22, 13



Command Solution - Improved

15

TurtleInterpreter>>evaluateCommand
| command  |
command := TurtleCommand fromStream: source
command isPenUp

ifTrue: [^self penUp].
command isMove

ifTrue: [^self move: command].
command isTurn

ifTrue: [^self turn: command].
etc.

Only TurtleCommand knows program syntax

Tuesday, October 22, 13



A class should hide a design decission

16

Turtle Command now hides all of the syntax of program 

Syntax change change - rest of program does not have to know

Tuesday, October 22, 13



Smarter Commands

17

Let the commands tell the turtle what to do

Tuesday, October 22, 13



TurtleInterpreter

18

TurtleInterpreter>>on: aProgramString
turtle := Turtle new.
source := ReadStream on: aProgramString

TurtleInterpreter>>evaluate
[source atEnd]

whileFalse: [self evaluateCommand]

TurtleInterpreter>>evaluateCommand
| command  |
command := TurtleCommand fromStream: source on: turtle.
command execute.

TurtleInterpreter class>>on: aProgramString
^super new on: aProgramString

Tuesday, October 22, 13



TurtleCommand

19

TurtleCommand>>execute
self isPenUp

ifTrue: [^ turtle penUp].
self isMove

ifTrue: [^ turtle move: amount].
self isTurn

ifTrue: [^ turtle 
turn:  amount 
direction: direction].

etc.

TuttleCommand instance variables
turtle
command
amount
direction
programSource

Tuesday, October 22, 13



What Have We Gained?

20

Tuesday, October 22, 13



Undo

21

Since command know what it did

It knows enough to undo it
Need eraser to undo drawing

Can save commands in stack for multiple undo

Tuesday, October 22, 13



Macros

22

Can group commands into compound command to make new commands

Square
move 100
turn 90 left
move 100
turn 90
move 100
turn 90
move 100

Tuesday, October 22, 13



Changing Program Syntax

23

Some environments provide GUI elements to create Turtle program

GUI element for move can produce Move commend

GUI creates list of command object to run

Tuesday, October 22, 13



Command Objects

24

Create a Command Class for each command in language

Command knows how to
Execute the command
Undo the command

Allows stepping through the program and undoing operations

Tuesday, October 22, 13



MoveCommand

25

Smalltalk defineClass: #MoveCommand
 superclass: #{Core.TurtleCommand}
 instanceVariableNames: 'turtle amount '

MoveCommand>>execute
 turtle move: amount

MoveCommand>>undo
 turtle
  left: 180;
  move: amount;
  left: 180

Tuesday, October 22, 13



Back to Turtle

26

Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10

New Syntax

penDown
move: 5
turnLeft: 90
move: 10
turnLeft: 90
move: 5
turnLeft: 90
move: 10

| turtle |
turtle := Turtle new.
turtle

penDown;
move: 5;
turnLeft: 90;
move: 10;
turnLeft: 90;
move: 5;
turnLeft: 90;
move: 10

If we have control over 
syntax create so we can
use compiler evaluate (Do it)

Read the program, transform the 
string into complete Smalltalk code
and use compiler evaluate: (do it)

Tuesday, October 22, 13

Of course we could just require the user to enter the text on the right, which would make our job easier.



Domain-Specific language (DSL)

27

Language dedicated to a particular problem domain

Examples

UNIX shell scripts
ColdFusion Markup Language
FilterMeister

For writing Photoshop plugins

Tuesday, October 22, 13



Some Advantages

28

Program written in words from the domain
Domain experts can understand, validate, modify, and write programs

Self-documenting code

Enhance quality, productivity, reliability, maintainability, portability and reusability

Domain-specific languages allow validation at the domain level

Tuesday, October 22, 13


