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Example - Turtle Graphics
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Turtle Graphics - used help teach programming

Program Turtle to 
Move across screen
Draw patterns

Operations
move
turn
penUp
penDown

Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10
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Assume We Have Turtle class
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Displays small turtle on screen

Responds to basic command
Move
Turn
penUp
penDown

Draws line when pen is down and Turtle moves
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How to parse Turtle Program
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As String

lines := turtleProgram tokensBasedOn: Character cr.
lines do: [:aLine | | command amount direction |

parts := aLine tokensBasedOn: Character space.
command :=  parts first.
command = 'move' | 'turn'

ifTrue: [
amount := (parts at: 2) asNumber.
command = 'turn' ifTrue: [

direction := parts last.]].
command = 'turn' ifTrue: [turtle turn: amount direction: direction].
command = 'move' ifTrue: [turtle move: amount]. 
command = 'penDown' ifTrue: [turtle penDown].
command = 'penUp' ifTrue: [turtle penUp].

turtleProgram := 'penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10'.
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New Commands
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color  
One argument - a color

circle  
One argument - radius
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Building Block - TurtleStream
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Possible Operations

nextToken
nextCommand
nextArgument
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Executing Turtle Program/Command
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TurtleInterpreter class
Responsibilities 

Analyze and execute turtle programs

Collaborations
Turtle 
TurtleStream

Turtle class
Responsibilities

Draw on screen
Perform operations
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TurtleInterpreter
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Instance variables
turtle - instance of Turtle
source - instance of TurtleStream

TurtleInterpreter>>on: aProgramString
Initializes turtle and source

turtle := Turtle new.
source := TurtleStream on: aProgramString

TurtleInterpreter>>evaluate
[source atEnd]

whileFalse: [self evaluateCommand]
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Simple Solution
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TurtleInterpreter>>evaluateCommand
| command |
command := source nextCommand.
command asLowercase = 'penUp'

ifTrue: [^self penUp].
command asLowercase = 'move'

ifTrue: [^self move].
command asLowercase = 'turn'

ifTrue: [^self turn].
etc.

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move
| distance |
distance := source nextArgument.
turtle move: distance

TurtleInterpreter>>turn
| amount direction |
amount := source nextArgument.
direction := source nextArgument.
turtle 

turn: amount 
direction: direction
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What Have We Gained?
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Bigger Building Blocks - TurtleCommands

12

Read line of program

Give line of program to TurtleCommand class

TurtleCommand parses line

Some methods

isMove
isTurn
amount
direction
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Command Solution
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TurtleInterpreter>>evaluateCommand
| command  |
line := source nextLine.
command := TurtleCommand on: line
command isPenUp

ifTrue: [^self penUp].
command isMove

ifTrue: [^self move: command].
command isTurn

ifTrue: [^self turn: command].
etc.

TurtleInterpreter>>penUp
turtle penUp

TurtleInterpreter>>move: command
turtle move: command amount.

TurtleInterpreter>>turn: command
turtle 

turn:  command amount 
direction: command direction
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What Have We Gained?
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Who knows the syntax for command?

Who has to change if syntax changes
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Command Solution - Improved
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TurtleInterpreter>>evaluateCommand
| command  |
command := TurtleCommand fromStream: source
command isPenUp

ifTrue: [^self penUp].
command isMove

ifTrue: [^self move: command].
command isTurn

ifTrue: [^self turn: command].
etc.

Only TurtleCommand knows program syntax
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A class should hide a design decission
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Turtle Command now hides all of the syntax of program 

Syntax change change - rest of program does not have to know
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Smarter Commands
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Let the commands tell the turtle what to do
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TurtleInterpreter
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TurtleInterpreter>>on: aProgramString
turtle := Turtle new.
source := ReadStream on: aProgramString

TurtleInterpreter>>evaluate
[source atEnd]

whileFalse: [self evaluateCommand]

TurtleInterpreter>>evaluateCommand
| command  |
command := TurtleCommand fromStream: source on: turtle.
command execute.

TurtleInterpreter class>>on: aProgramString
^super new on: aProgramString
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TurtleCommand
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TurtleCommand>>execute
self isPenUp

ifTrue: [^ turtle penUp].
self isMove

ifTrue: [^ turtle move: amount].
self isTurn

ifTrue: [^ turtle 
turn:  amount 
direction: direction].

etc.

TuttleCommand instance variables
turtle
command
amount
direction
programSource

Tuesday, October 22, 13



What Have We Gained?
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Undo

21

Since command know what it did

It knows enough to undo it
Need eraser to undo drawing

Can save commands in stack for multiple undo

Tuesday, October 22, 13



Macros
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Can group commands into compound command to make new commands

Square
move 100
turn 90 left
move 100
turn 90
move 100
turn 90
move 100
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Changing Program Syntax
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Some environments provide GUI elements to create Turtle program

GUI element for move can produce Move commend

GUI creates list of command object to run
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Command Objects
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Create a Command Class for each command in language

Command knows how to
Execute the command
Undo the command

Allows stepping through the program and undoing operations
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MoveCommand
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Smalltalk defineClass: #MoveCommand
 superclass: #{Core.TurtleCommand}
 instanceVariableNames: 'turtle amount '

MoveCommand>>execute
 turtle move: amount

MoveCommand>>undo
 turtle
  left: 180;
  move: amount;
  left: 180
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Back to Turtle
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Sample Program

penDown
move 5
turn 90 left
move 10
turn 90 left
move 5
turn 90 left
move 10

New Syntax

penDown
move: 5
turnLeft: 90
move: 10
turnLeft: 90
move: 5
turnLeft: 90
move: 10

| turtle |
turtle := Turtle new.
turtle

penDown;
move: 5;
turnLeft: 90;
move: 10;
turnLeft: 90;
move: 5;
turnLeft: 90;
move: 10

If we have control over 
syntax create so we can
use compiler evaluate (Do it)

Read the program, transform the 
string into complete Smalltalk code
and use compiler evaluate: (do it)
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Of course we could just require the user to enter the text on the right, which would make our job easier.



Domain-Specific language (DSL)
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Language dedicated to a particular problem domain

Examples

UNIX shell scripts
ColdFusion Markup Language
FilterMeister

For writing Photoshop plugins
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Some Advantages
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Program written in words from the domain
Domain experts can understand, validate, modify, and write programs

Self-documenting code

Enhance quality, productivity, reliability, maintainability, portability and reusability

Domain-specific languages allow validation at the domain level
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