
CS 535 Object-Oriented Programming & Design
Fall Semester, 2013

Doc 11 Some OO Review
Oct 3 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, October 3, 13

References

2

Object-Oriented Design Heuristics, Riel

Principles of OO Design, or Everything I Know About Programming, I Learned from Dilbert, http://
alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html

Smalltalk Best Practice Patterns, Beck, Prentice Hall,1997

Thursday, October 3, 13

3

Some Review

Thursday, October 3, 13

4

Names

ClassNames

methodName

variableName

Structure

Use full words in names

Semantics

Select meaningful names

What a class is

What a method does

Role a variable plays

Thursday, October 3, 13

5

insert: n and:r
|temp|
r isNil
ifTrue:
[
temp:= Node new:n.

^temp.
]

ifFalse:
[
(n < (r info))
ifTrue:
[
r llink:(self insert:n and:(r llink)).
]
ifFalse:
[
r rlink: (self insert:n and:(r rlink)).
].
^r.
]

Thursday, October 3, 13

Control o

6

insert: n and:r

| temp |
r isNil
 ifTrue:
 [temp := Node new: n.
 ^temp]
 ifFalse:
 [n < r info
 ifTrue: [r llink: (self insert: n and: r llink)]
 ifFalse: [r rlink: (self insert: n and: r rlink)].
 ^r]

Thursday, October 3, 13

Using Full Names

7

insert: aValue into: aNode

aNode isNil
 ifTrue:
 [^Node new: aValue]
 ifFalse:
 [aValue < aNode info
 ifTrue: [aNode left: (self insert: aValue into: aNode left)]
 ifFalse: [aNode right: (self insert: aValue into: aNode right)].
 ^aNode]

Thursday, October 3, 13

8

variance
| n ans sum resultArray|
n := self size.
sum := 0.
self isEmpty ifTrue: [^0].
self do: [:i |sum := sum + i].
ans := (sum / n) asFloat.
sum :=0 asFloat.
resultArray := self collect: [:j | (j - ans) * (j-ans)].
resultArray do: [:i |sum := sum + i].
^(sum / (n-1)) asFloat

Thursday, October 3, 13

9

variance

 | Average num Variance Result size |
 Variance := 0.
 size:= self size.
 Average := self averages.
 num:= self calculate: Average.
 ^(num / (size - 1)) asFloat

Thursday, October 3, 13

10

squares
" This method returns a collection that contains the squares of the
values in the receiver collection "
| arr1 |
arr1:= self collect: [:each | each * each].
^ arr1

Thursday, October 3, 13

11

arrayAverage

 | sumOfElements averageOfArray |
 sumOfElements := 0.
 self do: [:each | sumOfElements := each + sumOfElements].
 averageOfArray := (sumOfElements / self size) asFloat.
 ^averageOfArray

Thursday, October 3, 13

12

Rant and Rave about names & programmer status

Thursday, October 3, 13

Abstraction

13

“Extracting the essential details about an item or group
of items, while ignoring the unessential details.”
 Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the
common pattern and provides a means for specifying
which variation to use.”
 Richard Gabriel

Thursday, October 3, 13

Encapsulation

14

Enclosing all parts of an abstraction within a container

Thursday, October 3, 13

Information Hiding

15

Hiding of design decisions in a computer program

Hide decisions are most likely to change,
To protect other parts of the program

Thursday, October 3, 13

Class

16

Represents an abstraction

Encapsulates data and operations of the abstraction

Hide design decisions/details

Thursday, October 3, 13

Not so much a definition of a class as a goal how we should use a class.

Heuristics

17

2.1 All data should be hidden within it class

2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place

Thursday, October 3, 13

Numbers of the heuristics are from the text Object-Oriented Design Heuristics by Riel

Non-OO items

18

Helper methods

Data classes

Thursday, October 3, 13

Helper method

19

Method in class that
Does not access any field (data member, instance variables)
Just uses parameters

Thursday, October 3, 13

Helper Method

20

printTree:aStream node:traverseNode

 traverseNode = nil
 ifFalse: [self printTree:aStream node: traverseNode left.
 aStream print: traverseNode data.
 aStream nextPutAll:','.
 self printTree:aStream node: traverseNode right].

Thursday, October 3, 13

Data Class

21

Node Instance Variables

left
right
value

Node instance methods

left
left:
right
right:
value
value:

Thursday, October 3, 13

22

Principles of OO Design, or Everything I Know
About Programming, I Learned from Dilbert

Alan Knight

Thursday, October 3, 13

http://alanknightsblog.blogspot.com/2011/10/principles-of-oo-design-or-everything-i.html

1. Never do any work that you can get someone
else to do for you

23

Excuse me Smithers. I need to know the total bills that have been paid so far this
quarter. No, don’t trouble yourself. If you’ll just lend me the key to your filing cabinet I’ll
go through the records myself. I’m not that familiar with your filing system, but how
complicated can it be? I’ll try not to make too much of a mess.

SMITHERS! I need the total bills that have been paid since the beginning of the
quarter. No, I’m not interested in the petty details of your filing system. I want that
total, and I’ll expect it on my desk within the next half millisecond.

Verses

Thursday, October 3, 13

1. Never do any work that you can get someone
else to do for you

24

Example 1 Total of bills that have been paid this quarter for a factory

 total := 0
 aFactory billings do: [:each |
 (each status == #paid and: [each date > startDate])
 ifTrue: [total := total + each amount]].

 total := aPlant totalBillingsPaidSince: startDate.

versus

Thursday, October 3, 13

1. Never do any work that you can get someone
else to do for you

25

averages

 | sum average |
 sum := 0.
 self size = 0 ifTrue: [^0].
 self do:
 [:each |
 each respondsToArithmetic
 ifTrue: [sum := sum + each]
 ifFalse: [^'array contains more than numbers']].
 average := sum / self size.
 ^average asFloat

Thursday, October 3, 13

1. Never do any work that you can get someone
else to do for you

26

Collection>>average

 self isEmpty ifTrue: [^0].
 ^self sum / self size

Collection>>sum

 self isEmpty ifTrue: [^0].
 ^self fold: [:a :b | a +b]

Thursday, October 3, 13

Encapsulation & Responsibility

27

Encapsulation is about responsibility

Who does the work

Who should do the work

Thursday, October 3, 13

2. Avoid Responsibility

28

If you must accept a responsibility, keep it as vague as possible.

For any responsibility you accept, try to pass the real work off to somebody else.

BinarySearchTree>>do: aBlock
root do: aBlock

Thursday, October 3, 13

29

Kent Beck's Properties of Good Style

Thursday, October 3, 13

Kent Beck's Properties of Good Code Stype

30

Once and only once

Lots of little pieces

Replacing objects

Moving Objects

Rates of change

Thursday, October 3, 13

Once and Only Once

31

"In a program written with good style, everything is said once and only once"

If have
several methods with same logic
several objects with same methods

then rule is not satisfied

Thursday, October 3, 13

Lots of little pieces

32

"Good code invariably has small methods and small objects"

Small pieces allow you to satisfy "once and only once"

Thursday, October 3, 13

Pieces?

33

variance
| n ans sum resultArray|
n := self size.
sum := 0.
self isEmpty ifTrue: [^0].
self do: [:i |sum := sum + i].
ans := (sum / n) asFloat.
sum :=0 asFloat.
resultArray := self collect: [:j | (j - ans) * (j-ans)].
resultArray do: [:i |sum := sum + i].
^(sum / (n-1)) asFloat

Thursday, October 3, 13

Example

34

variance

 | mean meanDifferences |
 mean := self average.
 meanDifferences := self collect: [:each | each - mean].
 ^meanDifferences squares sum/(self size -1)

Pieces
average
squares
sum

Thursday, October 3, 13

Replacing objects

35

Good style leads to easily replaceable objects

When you can extend a system soley by adding new objects without modifying
exisiting objects, then you have system that is fexible and cheap to maintain

Needs lots of little pieces

Thursday, October 3, 13

36

Some heuristics

Thursday, October 3, 13

OO Program

37

Thursday, October 3, 13

Building Blocks

38

OrderedCollection
String
Dictionary
Characters
Streams
Trolls
etc.

Thursday, October 3, 13

39

Class Builder
verses

Program Writer

Thursday, October 3, 13

"Main"

40

Adventure open

Thursday, October 3, 13

What does "main" in a program do? Think of a GUI application. Where is the main there?

Building Block = Class

41

2.8 A class should capture one and only one key abstraction

Thursday, October 3, 13

Keep related data and behavior in one place

42

This is the most important idea in OO

Thursday, October 3, 13

Corollary

43

To perform an operation send a message to the object that contains the data

Thursday, October 3, 13

44

Spin off nonrelated information into another class

VagueClass

data

f1()

f2()
f3()

f4()

Data1

Class1

f1()

f2()

Data2

Class2

f3()

f4()

Thursday, October 3, 13

God Class

45

God object is an object that knows too much or does too much

Behavioral Form

Replaces the main
Does too much

Thursday, October 3, 13

Definition is from Wikipedia

Heuristics

46

Distribute system intelligence horizontally as uniform as possible

Do not create god classes/objects
Be very suspicous of a class whose name contains Driver, Manager, System

Beware of classes that have many accessor methods defined in there public
interface

Beware of classes that have too much noncommunicating behavoir

Thursday, October 3, 13

Using GUIs

47

Model should not depend on the interface
The interface should depend on the model

So interface needs to access data in the model

Thursday, October 3, 13

