
CS 535 Object-Oriented Programming & Design
Fall Semester, 2013

Doc 6 Classes, Polymorphism, Testing
Sept 12 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Thursday, September 12, 13

self & super

2

self
Refers to the receiver of the message (current object)

Methods referenced through self are found by:
Searching the class hierarchy starting with the class of receiver

super
Refers to the receiver of the message (current object)

Methods referenced through super are found by:
Searching the class hierarchy starting the superclass of the
class containing the method that references super

Thursday, September 12, 13

Why Super

3

Super is used when:

The child class overrides a method
Needs to call overridden method

Common Pattern

ClassPointSubclass>>initialize
super initialize.
z := 0.

Thursday, September 12, 13

self and super Example

4

Parent>>name
 ^'Parent'

Child>>name
 ^'Child'

Child>>selfName
 ^self name

Child>>superName
 ^super name

GrandChild>>name
 ^'GrandChild'

Parent

Child

GrandChild

Code Output

| grandchild |

grandchild := Grandchild new.

Transcript

 show: grandchild name; Grandchild

 cr;

 show: grandchild selfName; Grandchild

 cr;

 show: grandchild superName; Parent

 cr;

Thursday, September 12, 13

How does this work

5

grandchild selfName

Receiver is grandchild object
Code in selfName method is ^self name
To find the method "self name" start search in Grandchild class

grandchild superName

Receiver is grandchild object
Code in superName method is ^super name
superName is implemented in Child class

To find the method "super name" start search in the superclass of Child

Thursday, September 12, 13

Why doesn't super = receiver's parent class?

6

Parent>>name
 ^'Parent'

Child>>name
 ^super name , 'Child'

Parent

Child

GrandChild

| trouble |

trouble := Grandchild new.

Transcript

 show: grandchild name;

Thursday, September 12, 13

If super referred to the parent class of the receiver the above code would result in an infinite loop. The receiver is a GrandChild
object so the parent is Child. So in Child>>name "super name" would refer to Child>>name.

Class Methods

7

ClassPoint class>>origin
 ^self x: 0 y: 0

ClassPoint class>>x: xNumber y: yNumber
 ^(self new)
 x: xNumber;
 y: yNumber;
 yourself

ClassPoint class>>new
 ^super new initialize

center := ClassPoint origin.
center x
"Returns o"

Thursday, September 12, 13

new & initialize

8

ClassPoint>>initialize
 x := 0.
 y := 0.

ClassPoint class>>new
 ^super new initialize

SomeParentClass new initialize

ClassPoint new

SomeParentClass new returns a ClassPoint
object

aClassPointObject initialize

Thursday, September 12, 13

Initialization and Inheritance

9

Smalltalk.Core defineClass: #Parent
 superclass: #{Core.Object}
 instanceVariableNames: 'foo '

Class Method

new
 ^super new initialize

Instance Methods

initialize
 foo :=6.

foo
 ^foo

Thursday, September 12, 13

Initialization of Subclass

10

Smalltalk.Core defineClass: #Child
 superclass: #{Core.Parent}
 instanceVariableNames: 'bar '

How to initialize bar?

Bad Idea 1 – Use Same pattern

Child class>>new
 ^super new initialize

Child>>initialize
 bar := 2.

Child>>bar
 ^bar

Thursday, September 12, 13

Why bad?

11

Does not work!

| test |
test := Child new.
test foo “returns nil”

initialize is called twice

Child class>>new is not needed
Child class inherits an identical method

Thursday, September 12, 13

Bad Idea 2 – Subclass initializes Parent Variable

12

Child>>initialize
 bar := 2.
 foo := 6.

Why Bad?

Child class now involved in private affairs of the Parent

Changes to the Parent instance variables require changing Child

Thursday, September 12, 13

Solution

13

Child>>initialize
 super initialize
 bar := 2.

Child>>bar
 ^bar

Parent class>>new
 ^super new initialize

Parent>>initialize
 foo :=6.

Parent>>foo
 ^foo

Thursday, September 12, 13

Class Methods that Create Instances

14

Smalltalk does not have constructors like C++/Java

Use class methods to create instances

Place these class methods in "instance creation" category

Thursday, September 12, 13

Initial State of Instances

15

Create objects in some well-formed state

Class creation methods should:

Have parameters for initial values of instance variables or
Set default values for instance variables

Provide an instance method that:

Sets the initial values of instance variables
Place method in "initialize" or "initialize - release" category
Use the name setVariable1: value variable2: ...

Thursday, September 12, 13

Disabling new

16

Point new
 Does not work

Point x: 1 y: 12
This works

Point class>>new

 ^self shouldNotImplement

Implementers wanted users to specify initial value of a point

Thursday, September 12, 13

Actually the method is in the parent class of Point.

Class Instance Variables

17

A class has one instance of a class instance variable

Each subclass has a different instance

Accessible by
Class methods of the class
Class methods of subclasses

Thursday, September 12, 13

Example

18

Smalltalk.Core defineClass: #ClassInstanceVariableExample
 superclass: #{Core.Object}
 indexedType: #none
 private: false
 instanceVariableNames: ''
 classInstanceVariableNames: 'test '
 imports: ''
 category: 'As yet unclassified'

Thursday, September 12, 13

Adding/Removing Class Instance Variables

19

Edit the class definition directly

Method 1 Method 2

Thursday, September 12, 13

Example

20

Smalltalk.Core defineClass: #Parent
 superclass: #{Core.Object}
 classInstanceVariableNames: 'test '

Parent class>>test
 test isNil ifTrue:[test := 0].
 test := test + 1.
 ^test

Smalltalk.Core defineClass: #Child
 superclass: #{Core.Parent}
 classInstanceVariableNames: ''

Transcript

 print: Parent test; 1

 cr;

 print: Parent test; 2

 cr;

 print: Child test; 1

 flush

Thursday, September 12, 13

Lazy Initialization

21

Parent class>>test
 test isNil ifTrue:[test := 0].
 test := test + 1.
 ^test

Thursday, September 12, 13

More on Blocks

22

Integer>>foo
| x block |
x := 10.
block := [self + x].
^block

| x fooBlock result |
x := 5.
fooBlock := 3 foo.
result := fooBlock value

In workspace

what is the value in result?

Thursday, September 12, 13

Indexed Instance Variable

23

Provides slots in objects for array like indexing

Used for Arrays

I have never added indexed instance variables

I have always used existing collection classes

Thursday, September 12, 13

24

Polymorphism

Thursday, September 12, 13

Polymorphism

25

Parent

Child

GrandChild

Parent>>name
 ^'Parent'

Parent>>age
^50

Parent>>total
^self name size + self age

Child>>name
 ^'Child'

Child>>age
 ^super age - 19

GrandChild>>name
 ^'GrandChild'

GrandChild>>age
^super age - 18

Which method is called

aPerson := ??? new.

aPerson name

aPerson age

aPerson total

when ??? is
Parent
Child
GrandChild

Thursday, September 12, 13

Template Method

26

Parent>>total
^self name size + self age

Parent method (total) defines algorithm using methods

Subclasses implement those methods

Thursday, September 12, 13

Object

27

All 'things' in Smalltalk are objects

Objects are created from classes

The class Object is the parent class of all classes

Object class contains common methods (270) for all objects

Determines behavior for all objects

Thursday, September 12, 13

printString

28

Returns a string representation of the receiver
Similar to toString in Java

5 printString '5'

$a printString '$a "16r0061"'

#(1 2 3) printString '#(1 2 3)'

a:= ClassPoint new.
a printString 'a ClassPoint'

Thursday, September 12, 13

Implementing printString for ClassPoint

29

ClassPoint>>printOn: aStream
 aStream
 nextPut: $(;
 print: x ;
 nextPut: $,;
 space;
 print: y;
 nextPut: $).

a:= ClassPoint new.
a
	
 x: 4;
	
 y: -1.
a printString

 '(4, -1)'

Where is printStream?

Thursday, September 12, 13

Object uses Template Method

30

Object>>printString
 "Answer a String whose characters are a description of the receiver."

 | aStream |
 aStream := WriteStream on: (String new: 16).
 self printOn: aStream.
 ^aStream contents

printString is a template method
You just implement printOn: and printString will work

Thursday, September 12, 13

Remember "do it once and only once"? Template method is one way of achieving that. Since the standard way of creating a string
representation is to create a WriteStream (don't worry about what that is), write to the stream and then return the contents of the
stream we put the common code in Object and just implement the part specific to our class. We could implement the entire logic
in each class, but that would not be "do it once and only once".

Useful WriteStream methods

31

nextPutAll: aString
nextPut: aCharacter
print: anObject
cr
space
tab
crtab

ClassPoint>>printOn: aStream
 aStream
 nextPut: $(;
 print: x ;
 nextPut: $,;
 space;
 print: y;
 nextPut: $).

Thursday, September 12, 13

isInteger

32

'cat' isInteger false

$5 isInteger false

4 isInteger true

4.5 isInteger false

Object>>isInteger

 ^false

Integer>>isInteger

 ^true

Thursday, September 12, 13

Replace case (if) with Polymorphism

33

Object>>isInteger
^self class = Integer verses

Object>>isInteger

 ^false

Integer>>isInteger

 ^true

Thursday, September 12, 13

Polymorphism makes change easier

34

What if we add a new type of Integer?

Object>>isInteger
self class = Integer

ifTrue: [^true].
self class = CS535Integer

ifTrue: [^true].
^false

verses
Object>>isInteger

 ^false

Integer>>isInteger

 ^true

CS535Integer>>isInteger

 ^true

Thursday, September 12, 13

When we add a new type of Integer class we just have to make sure it returns the correct result. We do not have to find and
change all the if or case statements that check to see if something is an integer.

Avoid checking the type of an Object

35

Heuristic 5.12
Explicit case analysis on the type of an object is usually an error.
The designer should use polymorphism in most of these cases

anObject isInteger
ifTrue: [Transcript show: anObject printString].

anObject isString
ifTrue: [Transcript show: anObject].

anObject isArray
ifTrue: [anObject do: [:element | Transcript show: element].

Transcript show: anObject printString

verses

Thursday, September 12, 13

Equality

36

All objects are allocated on the heap
Variables are references (like a pointer) to objects

A == B
Returns true if the two variables point to the same location

A = B
Returns true if the two variables point to equivalent objects

In Smalltalk you want to use '=' nearly all the time

A ~= B
Means (A = B) not

A ~~ B
Means (A == B) not

Thursday, September 12, 13

Defining =

37

If you define = also define hash

ClassPoint>>= anObject
 anObject isPoint ifFalse:[^false].
 ^self x = anObject x and: [self y = anObject y]

ClassPoint>>hash

 ^x hash hashMultiply bitXor: y hash

Thursday, September 12, 13

38

Testing

Thursday, September 12, 13

Johnson's Law

39

If it is not tested it does not work

Thursday, September 12, 13

Types of tests

40

Unit Tests

Tests individual code segments

Functional Tests

Test functionality of an application

Thursday, September 12, 13

Why Unit Testing

41

The more time between coding and testing

More effort is needed to write tests
More effort is needed to find bugs
Fewer bugs are found
Time is wasted working with buggy code
Development time increases
Quality decreases

Without unit tests

Code integration is a nightmare
Changing code is a nightmare

Thursday, September 12, 13

Unit Tests Must be Easy To Run

42

Must be able to

Easily run many tests at once
Allow others to run the tests
Keep the tests for later
Scale with more developer and project size

Test stored in a workspace

Do not work in any sizable project
Do not work well with multiple programmers
Are easily lost
Are not run very often

Thursday, September 12, 13

Testing First

43

First write the tests

Then write the code to be tested

Writing tests first:

Removes temptation to skip tests

Makes you define of the interface & functionality of the code before

Thursday, September 12, 13

SUnit

44

Testing framework for automating running of unit tests in Smalltalk

In SUnit

Programmer manually writes the test
SUnit automates the running of the test
Simplifies finding tests that fail

Ports to other languages can be found at:
http://www.xProgramming.com/software.htm

Thursday, September 12, 13

Three GUI Interfaces for viewing Test Results

45

TestRunner
Already loaded in Image

Browser SUnit Extensions
 Easier to run individual tests
 Needs to be loaded

SUnitToo
Automates more actions

Thursday, September 12, 13

Loading SUnitToo

46

Step 1

In Launcher window

Open the parcel manager

Thursday, September 12, 13

Loading SUnitToo

47

Step 2

Thursday, September 12, 13

Creating a Test Class

48

Select the class you want to test

Thursday, September 12, 13

Creating a Test Class

49

Select "Add Test Case" from Class menu

Thursday, September 12, 13

Creating a Test Class

50

Now can add test method to the class

Thursday, September 12, 13

How to Run the Tests

51

RunDebugStep into

Text

Thursday, September 12, 13

Result of Running Test

52

Thursday, September 12, 13

Result of Running Multiple Tests

53

Window of listing failed tests

Thursday, September 12, 13

Sample Test Case

54

ClassPointTest>>testX

 | aPoint |
 aPoint := ClassPoint new.
 self
 assert: aPoint x = 0;
 assert: aPoint y = 0.
 aPoint x: 5.
 self assert: aPoint x = 5.
 self deny: aPoint x = 10.

ClassPointTest is subclass of SUnit.TestCase
Framework runs methods whose name start with test

Thursday, September 12, 13

This is a silly test. We don't need to test an setter method. But this is just an example of a test method.

Important Methods of TestCase

55

assert: aBooleanExpression
deny: aBooleanExpression
should: [aBooleanExpression]
should: [aBooleanExpression] raise: AnExceptionClass
shouldnt: [aBooleanExpression]
shouldnt: [aBooleanExpression] raise: AnExceptionClass
signalFailure: aString

Thursday, September 12, 13

Another Example

56

testZeroDivide
 self
 should: [1/0]
 raise: ZeroDivide.

 self
 shouldnt: [1/2]
 raise: ZeroDivide

 self should: [2 = 1 + 1]

Thursday, September 12, 13

setUp & tearDown

57

setUp
Called before running each test method

tearDown
Called after running each test method

Used to set up and tear down items for tests
files
database connections
objects needed for test methods

Thursday, September 12, 13

Example

58

ClassPointTest>>testLarge
 self assert: largePoint x = 100.
 largePoint x: 10.
 self assert: largePoint x = 10.

ClassPointTest>>setUp

 largePoint := ClassPoint new.
 largePoint
 x: 100;
 y: 100

Thursday, September 12, 13

