
CS 535 Object-Oriented Programming & Design
Fall Semester, 2013

Doc 2 More OO Introduction
Aug 29, 2013

Copyright ©, All rights reserved. 2013 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Wednesday, August 28, 13

References

2

Object-Oriented Design Heuristics, Chapter 2

Wednesday, August 28, 13

3

Why is OO Good?

Wednesday, August 28, 13

For discussion in class

4

Does your code achieve those properties of goodness?

Wednesday, August 28, 13

5

struct Stack {
float[] elements
int topOfStack

}

void push(stack *Stack,float elementToAdd) {
stack.elements[topOfStack++] = elementToAdd;

}

Wednesday, August 28, 13

6

public class Stack {
public float[] elements
public int topOfStack

}

public class StackStuff

public void push(stack Stack,float elementToAdd) {
stack.elements[topOfStack++] = elementToAdd;

}
}

Wednesday, August 28, 13

7

Terms

Class
A blueprint to create objects
Includes attributes and methods that the created objects all share

Object
Allocated region of storage
Both the data and the instructions that operate on that data
Instance of a class

Wednesday, August 28, 13

From Wikipedia

http://en.wikipedia.org/wiki/Object_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object_(object-oriented_programming)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)

Abstraction

8

“Extracting the essential details about an item or group
of items, while ignoring the unessential details.”
 Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the
common pattern and provides a means for specifying
which variation to use.”
 Richard Gabriel

Wednesday, August 28, 13

Encapsulation

9

Enclosing all parts of an abstraction within a container

Wednesday, August 28, 13

Information Hiding

10

Hiding of design decisions in a computer program

Hide decisions are most likely to change,
To protect other parts of the program

Wednesday, August 28, 13

Class

11

Represents an abstraction

Encapsulates data and operations of the abstraction

Hide design decisions/details

Data

Operations

Wednesday, August 28, 13

Not so much a definition of a class as a goal how we should use a class.

Alan Kay - 2003

12

OOP to me means only
messaging,
local retention and
protection and hiding of state-process, and
extreme LateBinding of all things

Wednesday, August 28, 13

http://c2.com/cgi/wiki?LateBinding
http://c2.com/cgi/wiki?LateBinding

Alan Kay

13

I'm sorry that I long ago coined the term "objects" for this topic because it
gets many people to focus on the lesser idea.

Wednesday, August 28, 13

Alan Kay

14

I'm sorry that I long ago coined the term "objects" for this topic because it
gets many people to focus on the lesser idea.

The big idea is "messaging"

Wednesday, August 28, 13

Alan Kay

15

I'm sorry that I long ago coined the term "objects" for this topic because it
gets many people to focus on the lesser idea.

The big idea is "messaging"

I thought of objects being like biological cells and/or individual
computers on a network, only able to communicate with messages

Wednesday, August 28, 13

Alan Kay

16

I'm sorry that I long ago coined the term "objects" for this topic because it
gets many people to focus on the lesser idea.

The big idea is "messaging"

I thought of objects being like biological cells and/or individual
computers on a network, only able to communicate with messages

I wanted to get rid of data

Wednesday, August 28, 13

Alan Kay

17

I'm sorry that I long ago coined the term "objects" for this topic because it
gets many people to focus on the lesser idea.

The big idea is "messaging"

The key in making great and growable systems is much more to design how its
 modules communicate rather than what their internal properties and
 behaviors should be

I thought of objects being like biological cells and/or individual
computers on a network, only able to communicate with messages

I wanted to get rid of data

Wednesday, August 28, 13

Alan Kay

18

Perspective is worth 80 IQ points.

Wednesday, August 28, 13

http://www.brainyquote.com/quotes/quotes/a/alankay375551.html
http://www.brainyquote.com/quotes/quotes/a/alankay375551.html

Classes and Objects

19

Abstraction

Hide data

Hide design decisions

Messages

Wednesday, August 28, 13

Relevant Heuristics

20

2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place

Wednesday, August 28, 13

Signs of Poor OO Design

21

Data Classes

Helper functions

Wednesday, August 28, 13

Data Class

22

class Point {
private int x;
private int y;

public void setX(int newX) {
x = newX;

}

public int getX() {
return x;

}

public void setY(int newY) {
y = newY;

}

public int getY() {
return y;

}

Class with
get/set methods
constructor
No or very few other methods

Wednesday, August 28, 13

Helper method

23

Method in class that
Does not access any field (data member, instance variables)
Just uses parameters

Sign that Data and Operations are not being kept together

Wednesday, August 28, 13

Assignment Results

24

Classes

Data Classes

Class Accessor Helper Other

Wednesday, August 28, 13

Helper Method - Example

25

class CrosswordPuzzle {
public void someMethodThatDoesStuff {

bunch of stuff not shown
count = vowelCount(aString);
blah

}

private int vowelCount(String word) {
int vowelCount = 0;
for (int k = 0; k< word.length(); k++) {

char current = word.charAt(k);
if ((current == 'a') || (current == 'e') || (current == 'i') || (current == "o")

|| (current == "u"))
vowelCount++;

}
return vowelCount;

}

Wednesday, August 28, 13

OO Version

26

class String {

public int vowelCount {
int count = 0;
for (char current in this)

if (current.isVowel()) count++;
return count;

}

class CrosswordPuzzle {
public void someMethodThatDoesStuff {

bunch of stuff not shown
count = aString.vowelCount();
blah

}

Is this better? Why

class Character {

public boolean isVowel() {
 return (this == 'a') || (this == 'e') || (this == 'i') || (this == "o")|| (this == "u");

}

Wednesday, August 28, 13

Linked List Example

27

class Node {
Object value;
Node previous;
Node next;

}

class LinkedList {
private head;
private tail;

public LinkedList() {//some code}

public boolean add(int index, Object element) {//blah}

public Object get(int index) {//some code}

public Object remove(int index) {//some code}

public boolean remove(Object element) {//some code}

public boolean removeLastOccurrence(Object element) {}

Wednesday, August 28, 13

http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html#removeLastOccurrence(java.lang.Object)
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html#removeLastOccurrence(java.lang.Object)
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Node Class

28

class Node {
Object value;
Node previous;
Node next;

}

Data Class

What are the operations?

Wednesday, August 28, 13

29

Heuristic

A method to help solve a problem, commonly informal

"rules of thumb"

Wednesday, August 28, 13

2.1 All data should be hidden within its class

30

public class Foo {
public int x;
public int y;

}

public class Foo {
private int x;
private int y;

public int getX() {return x;}
public int getY() {return y;}

public void setX(int newX){
x = newX

}

public void setY(int newY){
y = newY

}
}

Wednesday, August 28, 13

How is the version on the right better than the version on the left?

31

Information Hiding

class LinkedList {
private int size;
private Node head;

}

Wednesday, August 28, 13

32

Information Hiding - Copies verses Reference

class LinkedList {
private int size;
private Node head;

public int size() {
return size;

}

public Node head() {
return head;

}
}

Wednesday, August 28, 13

33

LinkedList data = new LinkedList();

head

Wednesday, August 28, 13

34

LinkedList data = new LinkedList();
data.addFirst("A");

head A

Wednesday, August 28, 13

35

LinkedList data = new LinkedList();
data.addFirst("A");
data.addFirst("B");

head AB

Wednesday, August 28, 13

36

LinkedList data = new LinkedList();
data.addFirst("A");
data.addFirst("B");
data.addFirst("C"):

Ahead BC

Wednesday, August 28, 13

37

LinkedList data = new LinkedList();
data.addFirst("A");
data.addFirst("B");
data.addFirst("C"):
Node head = data.head();
head.next = new Node("Z")

head Z

Wednesday, August 28, 13

38

Information Hiding - Copies verses Reference

class LinkedList {
private int size;
private Node head;

public int size() {
return size;

}

public Node head() {
return head;

}
}

Wednesday, August 28, 13

39

Information Hiding

class LinkedList {
private int size;
private Node head;

public void addFirst(Node newData) {
newData.next(head);
head = newData;

}

Wednesday, August 28, 13

40

Information Hiding

class LinkedList {
private int size;
private Node head;

public void addFirst(Object data) {
head = new Node(data, head);

}

public Node getFirst() {
return head;

}

Wednesday, August 28, 13

