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Why is OO Good?
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For discussion in class
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Does your code achieve those properties of goodness? 
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struct Stack {
float[] elements
int topOfStack

}

 

void push(stack *Stack,float elementToAdd) {
stack.elements[topOfStack++] = elementToAdd;

}
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public class Stack {
public float[] elements
public int topOfStack

}

 
public class StackStuff

public void push(stack Stack,float elementToAdd) {
stack.elements[topOfStack++] = elementToAdd;

}
}
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Terms

Class
A blueprint to create objects
Includes attributes and methods that the created objects all share

Object
Allocated region of storage
Both the data and the instructions that operate on that data
Instance of a class 
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From Wikipedia

http://en.wikipedia.org/wiki/Object_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object_(object-oriented_programming)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)


Abstraction
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“Extracting the essential details about an item or group 
of items, while ignoring the unessential details.”
 Edward Berard

“The process of identifying common patterns that have 
systematic variations; an abstraction represents the 
common pattern and provides a means for specifying 
which variation to use.”
 Richard Gabriel
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Encapsulation
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Enclosing all parts of an abstraction within a container
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Information Hiding
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Hiding of design decisions in a computer program

Hide decisions are most likely to change, 
To protect other parts of the program
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Represents an abstraction

Encapsulates data and operations of the abstraction

Hide design decisions/details

Data

Operations
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Not so much a definition of a class as a goal how we should use a class. 
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OOP to me means only 
messaging,
local retention and 
protection and hiding of state-process, and 
extreme LateBinding of all things
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http://c2.com/cgi/wiki?LateBinding
http://c2.com/cgi/wiki?LateBinding
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I'm sorry that I long ago coined the term "objects" for this topic because it 
gets many people to focus on the lesser idea.
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Alan Kay
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I'm sorry that I long ago coined the term "objects" for this topic because it 
gets many people to focus on the lesser idea.

The big idea is "messaging"

The key in making great and growable systems is much more to design how its
 modules communicate rather than what their internal properties and
 behaviors should be

I thought of objects being like biological cells and/or individual 
computers on a network, only able to communicate with messages

I wanted to get rid of data
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Alan Kay
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Perspective is worth 80 IQ points.
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http://www.brainyquote.com/quotes/quotes/a/alankay375551.html
http://www.brainyquote.com/quotes/quotes/a/alankay375551.html


Classes and Objects
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Abstraction

Hide data

Hide design decisions 

Messages
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Relevant Heuristics
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2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place
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Signs of Poor OO Design

21

Data Classes

Helper functions
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Data Class
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class Point {
private int x;
private int y;

public void setX(int newX) {
x = newX;

}

public int getX() {
return x;

}

public void setY(int newY) {
y = newY;

}

public int getY() {
return y;

}

Class with 
get/set methods
constructor
No or very few other methods
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Helper method
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Method in class that
Does not access any field (data member, instance variables)
Just uses parameters

Sign that Data and Operations are not being kept together
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Assignment Results
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Classes

Data Classes

Class Accessor Helper Other
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Helper Method - Example
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class CrosswordPuzzle {
public void someMethodThatDoesStuff {

bunch of stuff not shown
count = vowelCount(aString);
blah

}

private int vowelCount(String word) {
int vowelCount = 0;
for (int k = 0; k< word.length(); k++ ) {

char current = word.charAt(k);
if ( (current == 'a') || (current == 'e' ) || (current == 'i') || (current == "o" )

|| (current == "u") ) 
vowelCount++;

}
return vowelCount;

}
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OO Version
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class String {

public int vowelCount {
int count = 0;
for (char current in this)

if (current.isVowel()) count++;
return count;

}

class CrosswordPuzzle {
public void someMethodThatDoesStuff {

bunch of stuff not shown
count = aString.vowelCount();
blah

}

Is this better? Why

class Character {

public boolean isVowel() {
 return (this == 'a') || (this == 'e' ) || (this == 'i') || (this == "o" )|| (this == "u");

}
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Linked List Example
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class Node {
Object value;
Node previous;
Node next;

}

class LinkedList {
private head;
private tail;

public LinkedList() {//some code}

public boolean add(int index, Object element) {//blah}

public Object get(int index) {//some code}

public Object remove(int index) {//some code}

public boolean remove(Object element) {//some code}

public boolean removeLastOccurrence(Object element) {}
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http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html#removeLastOccurrence(java.lang.Object)
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html#removeLastOccurrence(java.lang.Object)
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html


Node Class
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class Node {
Object value;
Node previous;
Node next;

}

Data Class

What are the operations?
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Heuristic

A method to help solve a problem, commonly informal

"rules of thumb"
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2.1 All data should be hidden within its class
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public class Foo {
public int x;
public int y;

}

public class Foo {
private int x;
private int y;

public int getX() {return x;}
public int getY() {return y;}

public void setX(int newX){
x = newX

}

public void setY(int newY){
y = newY

}
}
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How is the version on the right better than the version on the left?
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Information Hiding

class LinkedList {
private int size;
private Node head;

}
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Information Hiding - Copies verses Reference

class LinkedList {
private int size;
private Node head;

public int size() {
return size;

}

public Node head() {
return head;

}
}
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LinkedList data = new LinkedList();

head
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LinkedList data = new LinkedList();
data.addFirst("A");

head A
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LinkedList data = new LinkedList();
data.addFirst("A");
data.addFirst("B");

head AB
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LinkedList data = new LinkedList();
data.addFirst("A");
data.addFirst("B");
data.addFirst("C"):

Ahead BC
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LinkedList data = new LinkedList();
data.addFirst("A");
data.addFirst("B");
data.addFirst("C"):
Node head = data.head();
head.next = new Node("Z")

head Z
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Information Hiding - Copies verses Reference

class LinkedList {
private int size;
private Node head;

public int size() {
return size;

}

public Node head() {
return head;

}
}
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Information Hiding

class LinkedList {
private int size;
private Node head;

public void addFirst(Node newData) {
newData.next(head);
head = newData;

}
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Information Hiding

class LinkedList {
private int size;
private Node head;

public void addFirst(Object data) {
head = new Node(data, head);

}

public Node getFirst() {
return head;

}
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