
CS 580 Client-Server Programming
Fall Semester, 2012

Doc 21 Concurrent Server & Thread Pools
Nov 15, 2012

Copyright ©, All rights reserved. 2012 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

Thursday, November 15, 12

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Thread Pool Pattern

2

Thread Pooling

Group of threads created to perform a number of tasks

A thread
Reads a task from a queue
Performs the task
Repeat

Thursday, November 15, 12

See http://en.wikipedia.org/wiki/Thread_pool_pattern

Server Options

3

Iterative Server - server handles one client at a time

Concurrent Server with Thread creation
Create new thread for each client

Concurrent Server with Thread Pool

Concurrent Server with expandable Thread Pool

Single thread handles multiple clients concurrently

Thursday, November 15, 12

Iterative Server - When to use

4

Iterative Server

while (true)
 {
 Socket client = serverSocket.accept();
 Sequential code to handle request
 }

When usable

TP = Time to process a request

A = arrival time between two consecutive requests

Then we need TP << A

Thursday, November 15, 12

Concurrent Server with Thread creation

5

Basic Concurrent Server

while (true)
 {
 Socket client = serverSocket.accept();
 new HandleClientThread(client).start();
 }

When usable

Let TC = time to create a thread

Let A = arrival time between two consecutive requests

We need TC << A

Often this is good enough

Thursday, November 15, 12

Time to Create thread

6

Threads Created Time - Java Time - Smalltalk

10,000 1,368 58

20,000 1,549 99

80,000 6,783 197

160,000 13,427 485

Time in milliseconds

Run on 2.13 GHz
Intel Core 2 Duo
4GB memory

Thursday, November 15, 12

Problem with Threads

7

Thread consume resources
Memory
CPU cycles

A program has a limit of
Threads it can productively support
Sockets it can have open

We need to insure we don’t create too many threads

Thursday, November 15, 12

Concurrent Server with Thread Pool

8

Create N worker threads
while (true)
 {
 Socket client = serverSocket.accept();
 Use an existing worker thread to handle
request
 }

When usable

TP = Time to process a request
A = arrival time between two consecutive requests
N = Thread Pool size

Then we need TP << A * N

Thursday, November 15, 12

Concurrent Server - expandable Thread Pool

9

Create N worker threads
while (true)
 {
 Socket client = serverSocket.accept();
 if worker thread is idle
 Use an existing worker thread to handle
request
 else
 create new worker thread to handle the
request
 }

When usable

Number of requests we can handle in a unit of time

 TP / N + 1/TC

where N is not constant

Thursday, November 15, 12

TP = Time to process a request
TC = time to create thread

Thread Pool Issues

10

How many threads?

When to create more threads?

When to destroy some threads?

What happens when threads stop working

Thursday, November 15, 12

Java ThreadPool Classes

11

java.util.concurrent.ExecutorService
Simple interface
Uses 3 common configurations for the pool

java.util.concurrent.ThreadPoolExecutor
Used by ExecutorSevice
Configurable

Thursday, November 15, 12

ExecutorService Example

12

 class Server extends Thread {
 private final ServerSocket serverSocket;
 private final ExecutorService pool;

 public Server(int port)
 throws IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newCachedThreadPool();
 }

 public void run() {
 try {
 for (;;) {
 pool.execute(new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown();
 }
 }
 }

 class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) {
 this.socket = socket;
 }

 public void run() {
 // process request
 }
 }

Thursday, November 15, 12

Example from http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()

