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Thread Pool Pattern
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Thread Pooling

Group of threads created to perform a number of tasks

A thread
Reads a task from a queue
Performs the task
Repeat 
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See http://en.wikipedia.org/wiki/Thread_pool_pattern



Server Options

3

Iterative Server - server handles one client at a time

Concurrent Server with Thread creation
Create new thread for each client

Concurrent Server with Thread Pool

Concurrent Server with expandable Thread Pool

Single thread handles multiple clients concurrently 
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Iterative Server - When to use
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Iterative Server

while (true)
 {
 Socket client = serverSocket.accept();
 Sequential code to handle request
 }

When usable

TP = Time to process a request 

A = arrival time between two consecutive requests

Then we need TP << A
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Concurrent Server with Thread creation
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Basic Concurrent Server

while (true)
 {
 Socket client = serverSocket.accept();
 new HandleClientThread(client).start();
 }

When usable

Let TC = time to create a thread

Let A = arrival time between two consecutive requests

We need TC << A

Often this is good enough
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Time to Create thread
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Threads Created Time - Java Time - Smalltalk

10,000 1,368 58

20,000 1,549 99

80,000 6,783 197

160,000 13,427 485

Time in milliseconds

Run on 2.13 GHz
Intel Core 2 Duo
4GB memory
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Problem with Threads
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Thread consume resources
Memory
CPU cycles

A program has a limit of 
Threads it can productively support
Sockets it can have open

We need to insure we don’t create too many threads
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Concurrent Server with Thread Pool
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Create N worker threads
while (true)
 {
 Socket client = serverSocket.accept();
 Use an existing worker thread to handle 
request
 }

When usable

TP = Time to process a request 
A = arrival time between two consecutive requests
N = Thread Pool size

Then we need TP << A * N
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Concurrent Server - expandable Thread Pool
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Create N worker threads
while (true)
 {
 Socket client = serverSocket.accept();
 if worker thread is idle
  Use an existing worker thread to handle 
request
 else
  create new worker thread to handle the 
request 
 }

When usable

Number of requests we can handle in a unit of time

 TP / N  + 1/TC 

where N is not constant
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TP = Time to process a request 
TC = time to create thread



Thread Pool Issues
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How many threads?

When to create more threads?

When to destroy some threads?

What happens when threads stop working
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Java ThreadPool Classes
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java.util.concurrent.ExecutorService
Simple interface
Uses 3 common configurations for the pool

java.util.concurrent.ThreadPoolExecutor
Used by ExecutorSevice
Configurable
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ExecutorService Example
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 class Server extends Thread {
   private final ServerSocket serverSocket;
   private final ExecutorService pool;

   public Server(int port)
       throws IOException {
     serverSocket = new ServerSocket(port);
     pool = Executors.newCachedThreadPool();
   }

   public void run() {
     try {
       for (;;) {
         pool.execute(new Handler(serverSocket.accept()));
       }
     } catch (IOException ex) {
       pool.shutdown();
     }
   }
 }

 class Handler implements Runnable {
   private final Socket socket;
   Handler(Socket socket) { 
      this.socket = socket; 
   }

   public void run() {
     // process request
   }
 }
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Example from http://java.sun.com/javase/6/docs/api/java/util/concurrent/ExecutorService.html

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()

