
CS 580 Client-Server Programming
Fall Semester, 2012

Doc 13 Server Types & Password Security
Oct 9, 2012

Copyright ©, All rights reserved. 2012 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

Tuesday, October 9, 12

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Types of Servers

2

Connectionless(UDP) verse Connection-Oriented (TCP)

Iterative verses Concurrent

Stateless verse stateful

Tuesday, October 9, 12

Iterative

3

Single process

Handles requests one at a time

Good for low volume & requests that are answered quickly

Tuesday, October 9, 12

Concurrent

4

Handle multiple requests concurrently

Normally uses thread/processes

Needed for high volume & complex requests

Harder to implement than iterative

Must deal with currency

Tuesday, October 9, 12

State information

5

Information maintained by server about ongoing interactions with clients

State information cause problems

Consumes resources

How long does one maintain the state?

Tuesday, October 9, 12

Stateless verses Stateful Servers

6

Stateless server

Server that does not maintain state information

Stateful server

Server that does maintain state information

Tuesday, October 9, 12

HTTP & Server State

7

HTTP is stateless protocol

But need state for shopping carts etc.

Use Cookies to save state on client site

Privacy issues
Security issues

Tuesday, October 9, 12

Stateless Protocols are easier

8

So students often transform stateful protocol into stateless protocol

Use cookie idea

Replay requests each time

Tuesday, October 9, 12

Modes of Operation

9

Stateful servers sometimes have different modes of operation

Each mode has a set of legal commands

In Login mode only the commands password & username are accepable

After successful login client-server connection in transaction mode

In transaction mode command X, Y Z are legal

These modes are also called server states or just states

Tuesday, October 9, 12

10

Some Security

Tuesday, October 9, 12

Places to attack

11

User

Client
Server

Network

Tuesday, October 9, 12

User Attacks

12

Users select passwords that are easy to quess

Just ask the user for their password

Tuesday, October 9, 12

Network attacks

13

Sniff network traffic

When user logs on view their password

telnet
HTTP
etc.

Tuesday, October 9, 12

Basic Http Authentication

14

Tuesday, October 9, 12

Requesting password protected page

15

GET /private/index.html HTTP/1.0
Host: localhost

HTTP/1.0 401 Authorization Required
Server: HTTPd/1.0
Date: Sat, 27 Nov 2004 10:18:15 GMT
WWW-Authenticate: Basic realm="Secure Area"
Content-Type: text/html
Content-Length: 311

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">
<HTML>
 <HEAD>
 <TITLE>Error</TITLE>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">
 </HEAD>
 <BODY><H1>401 Unauthorised.</H1></BODY>
</HTML>

Client Request

Server Response

Tuesday, October 9, 12

User enters name and password

16

GET /private/index.html HTTP/1.0
Host: localhost
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

HTTP/1.0 200 OK
Server: HTTPd/1.0
Date: Sat, 27 Nov 2004 10:19:07 GMT
Content-Type: text/html
Content-Length: 10476

User enters (name "Aladdin", password "open sesame")

Server response:

Browser sends

Tuesday, October 9, 12

Base64 Encoding

17

Encodes any byte sequence into sequence of printable characters

Encoded sequence can be decoded

Used to encode MIME contents for transport
Email Attachments

Tuesday, October 9, 12

Base 64 Algorithm

18

Divide input into parts each part 24 bits long (3 bytes)

Convert each 24 bit sequence as follows:

Divide the 24 bits into four groups of 6 bits

Use the table to convert each 6 bits

Value Encoding

0 A

1 B

... ...

25 Z

Value Encoding

26 a

27 b

... ...

51 z

Value Encoding

52 0

53 1

... ...

61 9

Value Encoding

62 +

63 /

pad with =

Tuesday, October 9, 12

Example

19

cats text

001111111 00111101 01001010 01001001

001111 111001 111010 100101 001001 001

001111 111001 111010 100101 001001 001000

15 57 58 37 9 8

P 5 6 l J I = =

binary

6 bit groups

6 bit groups padded

As decimal

Converted

Tuesday, October 9, 12

Base64 Encoding & HTTP Authentication

20

Use Base64 encoding for user name and password

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

user name "Aladdin"
password "open sesame"

Aladdin:open sesame

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Tuesday, October 9, 12

Base64 Decoding

21

Base 64 is designed to be decoded

Just reverse steps

So HTTP Authentication is not secure
Same as sending user name and password as plain text

Tuesday, October 9, 12

How to send passwords over network?

22

Use secure connection
SSL, TSL

Use one-way hash

Tuesday, October 9, 12

One-Way Hash Functions

23

Let M be a message (sequence of bytes)

A one-way hash function f() such that:

 f maps arrays of bytes to arrays of bytes
 f(M) is always the same length
 Given an M it is easy to compute f(M)
 Given f(M) it is very hard/impossible to compute M
 Given M it is very hard/impossible to find N such that f(M) = f(N)

MD5 - Message Digest 5
SHA - Secure Hash Algorithm

Tuesday, October 9, 12

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class OneWay
 {
 public static void main(String args[])
 throws NoSuchAlgorithmException
 {
 MessageDigest sha = MessageDigest.getInstance("SHA");
 sha.update("Hi mom".getBytes());
 byte[] shaHash = sha.digest();
 System.out.println(new String(shaHash));

 MessageDigest md5 = MessageDigest.getInstance("MD5");
 md5.update("Hi mom".getBytes());
 byte[] md5Hash = md5.digest();
 System.out.println(new String(md5Hash));
 }
 }

Tuesday, October 9, 12

Hex Representation

25

Usually one converts sha/md5 hash to
Base 64
Hex

static final String HEXES = "0123456789ABCDEF";
 public static String getHex(byte [] raw) {
 if (raw == null) {
 return null;
 }
 final StringBuilder hex = new StringBuilder(2 * raw.length);
 for (final byte b : raw) {
 hex.append(HEXES.charAt((b & 0xF0) >> 4))
 .append(HEXES.charAt((b & 0x0F)));
 }
 return hex.toString();
 }

Tuesday, October 9, 12

lost the reference to the source of this code, but it is fairly common

Using one-way hash to send password

26

Client
Requests nonce from server
Client computes hash(password + nonce)
Client sends hash(password + nonce) & nonce back to server

Server
Gets hash(password + nonce) & nonce
Reads password from file
Computes hash(password + nonce)
Compares value with one client sent

nonce
String that is used only once
Should be longer that 48 bits

Tuesday, October 9, 12

What the attacher sees

27

nonce
hash(password + nonce)

but hash is one way so can not reverse it

Tuesday, October 9, 12

How they can break this system

28

They know
nonce
hash(password + nonce)

Compute table containing
word hash(word + nonce)

Do it for all
words in dictionary
List of potential passwords

Now do reverse look up on hash(password + nonce)

Tuesday, October 9, 12

How to defeat look up trick

29

Use good password
multiple words
Mix cases
Use numbers and other characters

Use Key stretching

Tuesday, October 9, 12

Key Stretching

30

Compute hash more than once

key = ""
for 1 to 65536 do
 key = hash(key + password + nonce)

Then client sends key

This means it will take a lot longer for attacher to build table

Tuesday, October 9, 12

reference http://en.wikipedia.org/wiki/Key_stretching

Password Files

31

If password files contains password then attacher just breaks into server

and gets all the passwords

Tuesday, October 9, 12

Salting the Password File

32

name hash salt

foo hash(password1+salt1) salt1

bar hash(password2+salt2) salt2

Password File

Client sends server password over secure connection

Server validates buy computing hash(password+salt)

Tuesday, October 9, 12

