
CS 580 Client-Server Programming
Fall Semester, 2012

Doc 12 Threads & NIO
Oct 4, 2012

Copyright ©, All rights reserved. 2012 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

Thursday, October 4, 12

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

How to cancel network request

2

Client code opens connection to server

Client sends request to server

Client calls read method on a writer/stream connected to socket

Server is slow in responding

User decides they want to cancel the request

How?

Thursday, October 4, 12

Problem - Blocking IO

3

public int read(char[] cbuf)
 throws IOException

Reads characters into an array. This method will block until some input is available,
an I/O error occurs, or the end of the stream is reached.

Read methods in Reader & InputStream

Blocking IO
When you call read() your code has to wait until read returns

So how to cancel the request???

Thursday, October 4, 12

http://docs.oracle.com/javase/6/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/6/docs/api/java/io/IOException.html

Inputstream - available

4

available()
Returns number of bytes you can read without blocking

Thursday, October 4, 12

Common Bad Idea - Polling

5

have flag userCanceledRequest
Set flag when user cancels request

while (in.available() == 0) {
if (userCanceledRequest) return;

}

in.read(buffer);

Thursday, October 4, 12

Why Polling is bad

6

while (in.available() == 0) {
if (userCanceledRequest) return;

}

Tight spin loop consumes all CPU
cycles available

Thursday, October 4, 12

Putting a delay in the loop can reduce the CPU consumption, but there are better ideas

Second idea - Use a Thread

7

Put your read inside a thread

When user wants to cancel interupt/kill thread

Thursday, October 4, 12

8

About Threads

Thursday, October 4, 12

Processes verses Threads

9

Processes (Heavy Weight)
Child process gets a copy of parent’s variables
Relatively expensive to start
No concurrent access to variables

Thread (Light Weight Process)
Child process shares parents variables
Relatively cheap to start
Concurrent access to variables is an issue

Thursday, October 4, 12

Thread Topics

10

Creating & Running Threads

Thread Scheduling

Deamon Threads

yield, sleep, join, interrupt

Deprecated methods - suspend, resume, stop, destroy

wait, notify (covered later)

Thursday, October 4, 12

Creating Threads by Inheritance

11

class ExtendingThreadExample extends Thread {
 public void run() {
 for (int count = 0; count < 4; count++)
 System.out.println("Message " + count +
 " From: Mom");
 }

 public static void main(String[] args) {
 ExtendingThreadExample parallel =
 new ExtendingThreadExample();
 System.out.println("Create the thread");
 parallel.start();
 System.out.println("Started the thread " + parallel.getId()););
 System.out.println("End");
 }
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 2 From: Mom
Message 3 From: Mom
Started the thread 7
End

Thursday, October 4, 12

Creating Threads by Composition

12

class SecondMethod implements Runnable {
 public void run() {
 for (int count = 0; count < 4; count++)
 System.out.println("Message " + count +
 " From: Dad");
 }

 public static void main(String[] args) {
 SecondMethod notAThread = new SecondMethod();
 Thread parallel = new Thread(notAThread);

 System.out.println("Create the thread");
 parallel.start();
 System.out.println("Started the thread");
 System.out.println("End");
 }
}

Output
Create the thread
Message 0 From: Dad
Message 1 From: Dad
Message 2 From: Dad
Message 3 From: Dad
Started the thread
End

Thursday, October 4, 12

Thread with a Name

13

public class WithNames implements Runnable {
 public void run() {
 for (int count = 0; count < 2; count++)
 System.out.println("Message " + count +
 " From: " +
Thread.currentThread().getName());
 }

 public static void main(String[] args) {
 Thread a = new Thread(new WithNames(),
"Mom");
 Thread b = new Thread(new WithNames(),
"Dad");

 System.out.println("Create the thread");
 a.start();
 b.start();
 System.out.println("End");
 }
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 0 From: Dad
Message 1 From: Dad
End

Thursday, October 4, 12

Threads Run Once

14

public class RunOnceExample extends Thread {
 public void run() {
 System.out.println("I ran");
 }

 public static void main(String args[]) throws Exception {
 RunOnceExample onceOnly = new RunOnceExample();
 onceOnly.setPriority(6);
 onceOnly.start();

 System.out.println("Try restart");
 onceOnly.start();

 System.out.println("The End");
 }
}

Can't restart a thread

Causes Exception

Thursday, October 4, 12

When the run method of a thread ends the thread is dead.

For Future Examples

15

public class SimpleThread extends Thread {
 private int maxCount = 32;

 public SimpleThread(String name) {
 super(name);
 }

 public SimpleThread(String name, int repetitions) {
 super(name);
 maxCount = repetitions;
 }

 public SimpleThread(int repetitions) {
 maxCount = repetitions;
 }

 public void run() {
 for (int count = 0; count < maxCount; count++) {
 System.out.println(count + " From: " + getName());
 }
 }
}

Thursday, October 4, 12

Some Parallelism

16

public class RunSimpleThread {
 public static void main(String[] args) {
 SimpleThread first = new
SimpleThread(5);
 SimpleThread second = new
SimpleThread(5);
 first.start();
 second.start();
 System.out.println("End");
 }
}

Output On Rohan
End
0 From: Thread-0
1 From: Thread-0
2 From: Thread-0
0 From: Thread-1
1 From: Thread-1
2 From: Thread-1
3 From: Thread-0
3 From: Thread-1
4 From: Thread-0
4 From: Thread-1

Java on a Solaris machine with multiple processors can run threads on different processors

Thursday, October 4, 12

Thread Scheduling

17

Priorities

Time-slicing

Thursday, October 4, 12

Priorities

18

Each thread has a priority

If there are two or more active threads
 If one has higher priority than others
 The higher priority thread is run until it is done or not active

java.lang.Thread field Value

Thread.MAX_PRIORITY 10

Thread.NORM_PRIORITY 5

Thread.MIN_PRIORITY 0

Java Thread Priorities

Thursday, October 4, 12

Java Priority

19

public class PriorityExample {
 public static void main(String[] args) {
 SimpleThread first = new SimpleThread(5);
 SimpleThread second = new SimpleThread(5);
 second.setPriority(8);
 first.start();
 second.start();
 System.out.println("End");
 }
} On Single Processor

0 From: Thread-5
1 From: Thread-5
2 From: Thread-5
3 From: Thread-5
4 From: Thread-5
0 From: Thread-4
1 From: Thread-4
2 From: Thread-4
3 From: Thread-4
4 From: Thread-4
End

On Multiple Processor Rohan
End
0 From: Thread-3
1 From: Thread-3
2 From: Thread-3
0 From: Thread-2
3 From: Thread-3
1 From: Thread-2
2 From: Thread-2
4 From: Thread-3
3 From: Thread-2
4 From: Thread-2

Thursday, October 4, 12

If you do not set the priority of a thread it has the same priority as the thread it was created in.

Time-Slicing

20

A thread is run for a short time slice and suspended,
It resumes only when it gets its next "turn"

Threads of the same priority share turns

Non time-sliced threads run until:
 They end
 They are terminated
 They are interrupted
 Higher priority threads interrupts lower priority threads
 They go to sleep
 They block on some call
 Reading a socket
 Waiting for another thread

Java spec allows time-sliced or non-time-sliced threads

Thursday, October 4, 12

Testing for Time-slicing

21

public class InfinityThread extends Thread
 {
 public void run()
 {
 while (true)
 System.out.println("From: " + getName());
 }

 public static void main(String[] args)
 {
 InfinityThread first = new InfinityThread();
 InfinityThread second = new InfinityThread();
 first.start();
 second.start();
 }
 }

If time-sliced output will be mixed

Thursday, October 4, 12

Java user & daemon Threads

22

Daemon thread
Expendable
When all user threads are done
 the program ends
 all daemon threads are stopped

User thread
Not expendable
Execute until
 Their run method ends or
 An exception propagates beyond the run method.

Thursday, October 4, 12

When a Java Program Ends

23

Runtime.exit(int) has been called and the security manager permits the exit
operation to take place.

or

Only daemon threads are running

Thursday, October 4, 12

Daemon Example

24

public class DaemonExample extends Thread {
 public static void main(String args[]) {
 DaemonExample shortLived = new
DaemonExample();
 shortLived.setDaemon(true);
 shortLived.start();
 System.out.println("Bye");
 }

 public void run() {
 while (true) {
 System.out.println("From: " + getName());
 System.out.flush();
 }
 }
}

Output
From: Thread-0 (Repeated many times)
Bye
From: Thread-0 (Repeated some more, then the program ends)

Thursday, October 4, 12

Thread States

25

Executing

Only one thread per processor can be running at a time

Runnable

A thread is ready to run but is not currently running

Not Runnable

A thread that is suspended or waiting for a resource

Thursday, October 4, 12

Yield

26

public class YieldThread extends Thread {
 public void run() {
 for (int count = 0; count < 4; count++) {
 System.out.println(count + " From: " + getName());
 yield();
 }
 }

 public static void main(String[] args) {
 YieldThread first = new YieldThread();
 YieldThread second = new YieldThread();
 first.setPriority(1);
 second.setPriority(1);
 first.start();
 second.start();
 System.out.println("End");
 }
}

Output (Explain this)
0 From: Thread-0
0 From: Thread-1
1 From: Thread-0
1 From: Thread-1
2 From: Thread-0
2 From: Thread-1
3 From: Thread-0
End
3 From: Thread-1

Allow another thread of the same priority to run
Thread is still runable

Thursday, October 4, 12

Java sleep

27

public class NiceThread extends Thread {
 public void run() {
 try {
 System.out.println("Thread started");
 sleep(5);
 System.out.println("From: " + getName());
 System.out.println("Clean up operations");
 }
 catch (InterruptedException interrupted) {
 System.out.println("In catch");
 }
 }

 public static void main(String args[]) {
 NiceThread missManners = new NiceThread();
 missManners.start();
 System.out.println("Main after start");
 }
}

Output
Thread started
Main after start
From: Thread-0
Clean up operations

Put calling thread in not-runnable state for specified milliseconds

Thursday, October 4, 12

Java sleep

28

public class NiceThread extends Thread {
 public void run() {
 System.out.println("Thread started");
 System.out.println("From: " + getName());
 System.out.println("Clean up operations");
 }

 public static void main(String args[]) throws InterruptedException {
 NiceThread missManners = new NiceThread();
 missManners.start();
 missManners.sleep(50); //Who is sleeping
 System.out.println("Main after start");
 }
}

Output
Thread started
From: Thread-0
Clean up operations
Main after start

Put calling thread in not-runnable state for specified milliseconds

Thursday, October 4, 12

Java deprecated Thread methods

29

The following Thread methods are not thread safe

suspend
resume
stop
destroy

Thursday, October 4, 12

Interrupt

30

The following program does not end
The interrupt just sets the interrupt flag!

public class NoInterruptThread extends Thread {
 public void run() {
 while (true) {
 System.out.println("From: " + getName());
 }
 }

 public static void main(String args[]) throws InterruptedException{
 NoInterruptThread focused = new NoInterruptThread();
 focused.setPriority(2);
 focused.start();
 Thread.currentThread().sleep(5); // Let other thread run
 focused.interrupt();
 System.out.println("End of main");
 }
}

Output
From: Thread-0 (repeated many times)
End of main
From: Thread-0 (repeated until program is killed)

Thursday, October 4, 12

Using Thread.interrupted

31

public class RepeatableNiceThread extends Thread {
 public void run() {
 while (true) {
 while (!Thread.interrupted())
 System.out.println("From: " + getName());

 System.out.println("Clean up operations");
 }
 }

 public static void main(String args[]) throws InterruptedException{
 RepeatableNiceThread missManners =
 new RepeatableNiceThread();
 missManners.setPriority(2);
 missManners.start();
 Thread.currentThread().sleep(5);
 missManners.interrupt();
 }
}

Output
From: Thread-0
Clean up operations
From: Thread-0
From: Thread-0 (repeated)

Thursday, October 4, 12

Interrupt and sleep, join & wait

32

public class NiceThread extends Thread {
 public void run() {
 try {
 System.out.println("Thread started");
 while (!isInterrupted()) {
 sleep(5);
 System.out.println("From: " + getName());
 }
 System.out.println("Clean up operations");
 } catch (InterruptedException interrupted) {
 System.out.println("In catch");
 }
 }

 public static void main(String args[]) {
 NiceThread missManners = new NiceThread();
 missManners.setPriority(6);
 missManners.start();
 missManners.interrupt();
 }
}

Output
Thread started
From: Thread-0
From: Thread-0
In catch

Thursday, October 4, 12

Java interrupt ()

33

Sent to a thread to interrupt it

If thread is blocked on a call to wait, join or sleep
 InterruptedException is thrown &
 The interrupted status flag is cleared

if the thread is blocked on I/O operation on an interruptible channel (NIO)
 ClosedByInterruptException is thrown
 The interrupted status flag is set

If the thread is blocked by a selector (NIO)
 Interrupt status is set
 The thread returns from the selector call as normal

If none of the other conditions hold then the thread’s interrupt status is set

Thursday, October 4, 12

Details

34

If thread is blocked on a call to wait, join or sleep
 InterruptedException is thrown &
 The interrupted status flag is cleared

if the thread is blocked on I/O operation on an interruptible channel (NIO)
 ClosedByInterruptException is thrown
 The interrupted status flag is set

If the thread is blocked by a selector (NIO)
 Interrupt status is set
 The thread returns from the selector call as normal

If none of the other conditions hold then the thread’s interrupt status is set

Thursday, October 4, 12

Interrupt and Pre JDK 1.4 NIO operations

35

If a thread is blocked on a read/write to a:
 Stream
 Reader/Writer
 Pre-JDK 1.4 style socket read/write

The interrupt does not interrupt the read/write operation!

The threads interrupt flag is set

Until the IO is complete the interrupt has no effect

This is one motivation for the NIO package

Thursday, October 4, 12

Example

36

public class SomeClientThread extends Thread {
private Socket connection;

public SomeClientThread(Socket toServer) {
connection = toServer;

}

public run() {
InputStream rawIn = connection.getInputStream();
BufferedReader in = new BufferedReader(new InputStreamReader(rawIn));
while (!isInterrupted()) {

String answer = in.readLine();
process input here

}
in.close();

}
}

Thursday, October 4, 12

If code is blocked in the readLine() then interrupting the thread has no effect until readLine is done

In short

37

Using stream IO there is no safe way to
always cancel a request to the server

You have to use NIO

Thursday, October 4, 12

38

NIO

Thursday, October 4, 12

NIO - New IO

39

Supports
Blocking I/O
Non-blocking I/O

Buffers

For data of primitive types

Character set encoders and decoders

A pattern-matching facility based on Perl-style regular expressions

Channels
Interruptible I/O
Blocking & non-blocking I/O

A file interface that supports locks and memory mapping of files

A multiplexed, non-blocking I/O facility for writing scalable servers

Thursday, October 4, 12

Channels (java.nio.channels)

40

Open connection to an entity such as
hardware device
file
network socket
program component

that is capable of performing I/O operations

Thursday, October 4, 12

Buffer (java.nio)

41

Buffers for different types
ByteBuffer
CharBuffer
DoubleBuffer
FloatBuffer
IntBuffer
LongBuffer
MappedByteBuffer
ShortBuffer

Thursday, October 4, 12

http://java.sun.com/javase/6/docs/api/java/nio/ByteBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/ByteBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/CharBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/CharBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/DoubleBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/DoubleBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/FloatBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/FloatBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/IntBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/IntBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/LongBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/LongBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/MappedByteBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/MappedByteBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/ShortBuffer.html
http://java.sun.com/javase/6/docs/api/java/nio/ShortBuffer.html

What is new - nio Buffers

42

One reads from and writes to nio buffers

nio Buffers have
capacity

Maximum elements buffer can hold
limit

Last position in buffer that can hold data
In ByteBuffers limit start out = capacity

position
Current position in buffer
reads and writes start a position
In ByteBuffers position starts out = 0

mark

array holding the actual data (usually)

mark ≤ position ≤ limit ≤ capacity

Thursday, October 4, 12

Basic nio Buffer operations - ByteBuffer

43

put(byte)
put(byte[])
putChar(char)
...

writes to buffer
Write starts at position
Moves position location after last byte written
Exception if not enough room in buffer

get()
get(byte[])
getChar()

Reads from position up to limit
Moves position to location after last byte read

Thursday, October 4, 12

Basic nio Buffer operations

44

flip()
Sets limit to position
Set position to zero
After writing to a buffer call flip to read contents

clear()
Sets limit to capacity
Set position to zero
Call clear() when you want to reuse a buffer, need to write first

rewind()
Sets position to zero
limit is not changed
Call when you want to reread buffer

Thursday, October 4, 12

SocketChannel Important methods

45

open()
close()
connect(SocketAddress)
configureBlocking(boolean)

True means reads block until there is data to return

read(ByteBuffer)
Returns number of byte read or -1 if at end of stream

write(ByteBuffer)
Returns number of byte written

Thursday, October 4, 12

Example Writing

46

 SocketChannel sdChatServer = SocketChannel.open();
 sdChatServer.configureBlocking(true);
 sdChatServer.connect(new InetSocketAddress("bismarck.sdsu.edu", 8009));
 ByteBuffer ioBuffer = ByteBuffer.allocate(1024);

 try {
 String message = "nickname:foo;;";
 ioBuffer.put(message.getBytes("UTF8"));
 ioBuffer.flip();
 int bytesWritten = sdChatServer.write(ioBuffer);
 } catch (IOException e) {
 System.out.println("Socket write error" + e.message());
 }

Thursday, October 4, 12

Example Reading

47

try {
 ioBuffer.clear();
 int numberBytesRead = sdChatServer.read(ioBuffer);

 if (numberBytesRead == -1) {
 sdChatServer.close();
 } else {
 ioBuffer.flip();
 byte[] responseBytes = new byte[numberBytesRead];

 ioBuffer.get(responseBytes, 0, numberBytesRead - 1);
 String response = new String(responseBytes, "UTF8");
 System.out.println(response);
 }
 } catch (IOException e) {
 System.out.println("Socket read error");
 }
 sdChatServer.close();
 }

Thursday, October 4, 12

Not that there should be a loop here to make sure that we have read the entire message from the server. The loop is not include
as I am trying to keep the example on a few slides as possible

SocketChannel read/write Exceptions

48

NotYetConnectedException
If this channel is not yet connected

ClosedChannelException
If this channel is closed

AsynchronousCloseException
If another thread closes this channel while reading

ClosedByInterruptException
If another thread interrupts the current thread while reading is in progress,
Channel is closed and setting the current thread's interrupt status

IOException
If some other I/O error occurs

Thursday, October 4, 12

http://docs.oracle.com/javase/6/docs/api/java/nio/channels/NotYetConnectedException.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/NotYetConnectedException.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/ClosedChannelException.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/ClosedChannelException.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/AsynchronousCloseException.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/AsynchronousCloseException.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/ClosedByInterruptException.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/ClosedByInterruptException.html
http://docs.oracle.com/javase/6/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/6/docs/api/java/io/IOException.html

So Using NIO we can stop a Read request

49

Put code in a thread
When user want to cancel operation call interrupt() on thread object
Thread has to check interrupted() calls
NIO blocking reads/writes will end with exception

AsyncTask

Threads

Put code in a doInBackground()
When user want to cancel operation call cancel(true) on asyncTask object
doInBackground() has to check isCancelled()
NIO blocking reads/writes will end with exception

Thursday, October 4, 12

http://developer.android.com/reference/android/os/AsyncTask.html#isCancelled()
http://developer.android.com/reference/android/os/AsyncTask.html#isCancelled()

MarsClient using NIO

50

public class MarsClient {
 SocketChannel serverConnection;
 InetSocketAddress serverAddress;
 ByteBuffer ioBuffer;

 public MarsClient(String serverHost, int port) {
 serverAddress = new InetSocketAddress(
 serverHost, port);
 ioBuffer = ByteBuffer.allocate(1024);
 }

Thursday, October 4, 12

Sending

51

 private void send(String message) throws IOException {
 if (serverConnection == null) {
 connect();
 }
 ioBuffer.clear();
 ioBuffer.put(message.getBytes("UTF8"));
 ioBuffer.flip();
 int bytesSent = serverConnection.write(ioBuffer);
 while (bytesSent < message.getBytes("UTF8").length)
 bytesSent += serverConnection.write(ioBuffer);
 }

 private void connect() throws IOException {
 serverConnection = SocketChannel.open(serverAddress);
 }

Thursday, October 4, 12

Reading

52

 private String readResponse() throws UnsupportedEncodingException, IOException {
 String response = "";
 ioBuffer.clear();
 int bytesRead;
 while ((bytesRead = serverConnection.read(ioBuffer)) != -1) {
 ioBuffer.flip();
 byte[] responseBytes = new byte[bytesRead];
 ioBuffer.get(responseBytes, 0, bytesRead);
 ioBuffer.clear();
 response += new String(responseBytes, "UTF8");
 if (response.contains(";;"))
 return response;
 }
 if (bytesRead == 0) serverConnection.close();
 return response;
 }

Thursday, October 4, 12

Converting response to hashtable

53

 private Hashtable<String,Float> parseToKeyValues(String message) throws IOException
{
 Hashtable<String,Float> keyValues = new Hashtable<String,Float>();
 UpToReader parser = new UpToReader(new StringReader(message));
 for (int k =1; k <= 2;k++) {
 String key = parser.upto(':');
 String value = parser.upto(';');
 keyValues.put(key, new Float(value));
 }
 return keyValues;
 }

Thursday, October 4, 12

Trip message

54

 public static String tripMessage(int people, float weight, float mpg,
 float malesPerYear) {
 return "trip;destination:mars;people:" + people + ";weight:" + weight
 + ";mpg:" + mpg + ";milesperyear:" + malesPerYear + ";;";
 }

 public Hashtable<String,Float> trip(int people, float weight, float mpg,

float milesPerYear) throws IOException{
 send(tripMessage(people,weight,mpg,milesPerYear));
 String response = readResponse();
 return parseToKeyValues(response);
 }

Thursday, October 4, 12

