
CS 535 Object-Oriented Programming & Design
Fall Semester, 2008

Doc 15 Some patterns
Nov 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

Design Patterns, Gamma, Helm, Johnson, Vlissides, 1995

Object-Oriented Design Heuristics, Riel, 1996

Observer Pattern

3

Subject notifies all observers when it changes

Subject

Observer1 Observer2 Observer3

Keeping it Flexible

4

Subject>>notifyObservers
observers do: [:each | each notify]

addObserver

removeObserver

notifyObservers

observers

Subject

getState

state

ConcreteSubject

notify

Observer
*

notify

concreteSubject

ConcreteObserver

Example: Counter

5

count

Counter

methods
increase
decrease

CountObserver

IncreaseCountObserver

increase
decrease

increase

Counter Class

6

instance variables
count

decrease
 count := count - 1.

increase
 count := count + 1.

count
 ^count

instance methods

Counter & Dependents without Observer

7

instance variables
count
countObserver
increaseObserver

decrease
 count := count - 1.
 countObserver newCount: count.

increase
 count := count + 1.
 countObserver newCount: count.
 increaseObserver countIncreased.

count
 ^count

instance methods

Comment

8

Counter Class knows:
Class of Views
Number of views
Calls specific methods in views

Add new views/dependents requires
Adding more instance variables
Modifying methods

Counter & Dependents with Observer

9

instance variables
count
dependents (collection)

decrease
 count := count - 1.
 self changed: #decrease

increase
 count := count + 1.
 self changed: #increase

changed: aSymbol
 dependents do: [:each | each update: aSymbol].

addDependent: anObject
 dependents add: anObject

count
 ^count

instance methods

Observers update:

10

Implement update: method

Called when subject has changed

updates observers state

Example

11

counter := Counter new.
simpleObserver := CountObserver observe: counter.
counter increase.
increase := IncreaseObserver observe: counter.

CountObserver>>update: aSymbol

 Transcript
 show: 'Change';
 space;
 show: subject count printString;
 cr

Comments

12

Special model class
implements changed:, addDependent:
contains dependents instance variable

View/dependents
implement update: method

Counter class
any number observers
Observers can be any type

Observers know about Counter class

Comments

13

Observer pattern part of many class libraries
Java, Smalltalk

Smalltalk
Object class implements much of the pattern
More options that shown

Coupling

14

Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the reusability of the
coupled objects "

"Unnecessary object coupling also increases the chances of system
corruption when changes are made to one or more of the coupled objects"

Linked List Example

15

Node>>print
Transcript

show: value printString.

LinkedList>>print
Transcript show: 'List('.
self

do: [:each | each print]
separatedBy: [Transcript show: ', ']

Linked list coupled to Transcript

Cant use it in
GUI
Network code
Background process

Linked List Example

16

Node>>print: aStream
aStream

nextPutAll: value printString.

LinkedList>>print: aStream
aStream nextPutAll: 'List('.
self

do: [:each | each print: aStream]
separatedBy: [aStream nextPutAll: ', ']

Linked list coupled to Stream interface

Can use it with
Transcript
Files
NetworkStream

With some work can extract data

Linked List Example

17

LinkedList>>asOrderedCollection
|collection |
collection := OrderedCollection new.
self

do: [:each | collection add: each value]
^collection

Linked list coupled to OrderedCollection

Can write code to put data
Transcript
Files
Any stream
GUI

Easy access to data

GUIs & Coupling

18

Domain information
Customer records
Inventory
Names
Reports
Addresses

Application/GUI information
Menus
Error Messages
Help information
Labels

Keep domain and application information separate

Application information changes faster
Often there is multiple view of domain information

Heuristic 3.5

19

In application that consists of an object-oriented model interacting with
a user interface,

the model should never be dependent on the interface

the interface should be dependent on the model

Model provides accessors to data that interface needs

Model-View-Controller (MVC)

20

Model

Encapsulates

Domain information
Core data and functionality

Independent of

Specific output representations
Input behavior

View

Display data to the user

Obtains data from the model

Multiple views of the model are possible

Controller

21

Handles input

Mouse movements and clicks
Keyboard events

Each view has it's own controller

Programmers commonly don't see controllers

MVC & Coupling

22

Model should know a little as possible about views

Views tend to know a lot about model

View is observer

Model is subject

ValueHolder

23

'cat' asValue

10 asValue

Object>>asValue
 "Return a ValueHolder on the receiver"

 ^ValueHolder with: self

ValueHolder is a subject

Simple Counter App

24

increase
 count value: (count value + 1)

decrease
 count value: (count value - 1)

count
 ^count isNil
 ifTrue:
 [count := 0 asValue]
 ifFalse:
 [count]

SimpleCounterApp
Parent class ApplicationModel
instance variable: count

Problem

25

Textfield Widget works with ValueHolder object

It changes the value of the ValueHolder

What if we want more complex subject?

How to use Counter Class in App

26

instance variables
count decrease

 count := count - 1.

increase
 count := count + 1.

count: aNumber
count := aNumber

count
 ^count

instance methods

Counter Class

Not a simple value for ValueHolder

Adapters

27

Basic Idea

28

x value

x value: aNumber
TextField

decrease
 count := count - 1.

increase
 count := count + 1.

count: aNumber
count := aNumber

count
 ^count

TextField uses

Counter class has

Adapter maps

SimpleCounterApp

29

initialize
 count := Counter new

decrease
 count decrease

increase
 count increase

count
 | countAdapter |
 countAdapter := AspectAdaptor subject: count.
 countAdapter
 forAspect: #count;
 subjectSendsUpdates: true.
 ^countAdapter

Counter Class

30

instance variables
count

decrease
 count := count - 1.
 self changed: #count

increase
 count := count + 1.
 self changed: #count

count: aNumber
count := aNumber

count
 ^count

initialize
 count := 0

instance methods

How it Works

31

Count is subject for AspectAdapter

AspectAdapter observes Count

AspectAdapter is subject for TextField

TextField observes AspectApapter

How it Works

32

TextField

User edits text

aspectAdapter value: x count count: x

How it Works

33

User clicks on + button

SimpleCounterApp>>increase
 count increase

Count>>increase
 count := count + 1.
 self changed: #count

AspectAdaptor

TextField
update

update

AspectAdaptor Count

value

count

Singleton

34

Ensure a class only has one instance

Provide global point of access to single instance

Smalltalk Implementation

35

Class instance variable
instance

Class methods

instance

 instance ifNil: [instance := super new initialize].
 ^instance

new

 self error: 'Singleton class, use instance for instance of class'

