
CS 535 Object-Oriented Programming & Design
Fall Semester, 2010

Doc 9 Testing and Struct
Sept 30 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

2

Slow down to go faster

3

Slow Down to Go Faster

Jerod Santo
Sept 29
http://fuelyourcoding.com/slow-down-to-go-faster/

If you want to move faster, you have to slow down.

3 ways to slow down to go faster

Testing

4

Automated test first thing dropped during time crunches

But software has to be tested

Manual testing is slow

Writing tests makes you think about problem which reduces development time

Naming Things

5

Only 2 hard problems in CS
cache invalidation
naming things
off-by-one errors

Good names make it easier to understand code

Makes it faster to modify/maintain code

Documentation

6

Makes it easier to modify/maintain code

Don't write novels - be brief

Document intent not implementation

An Opposing View

7

Unit testing is teh suck, Urr.
Wil Shipley

http://www.wilshipley.com/blog/2005/09/unit-testing-is-teh-suck-urr.html

When modify code test it your self - try to break the code

Use people to Beta test programs

Another View

8

Mac/iOS Core Data library

Unit testing done during development

Unit testing made library solid & stable

Wil Shipley agrees with bbum

bbum
http://www.friday.com/bbum/2005/09/24/unit-testing/

Some things are hard to test

9

GUI
Network connections
Databases

10

Testing

What to Test

11

Everything that could possibly break

Test values

 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

Common Things Programs Handle Incorrectly

12

Adapted with permission from “A Short Catalog of
Test Ideas” by Brian Marick

Any Object
nil pointer

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers

Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Brian Marick paper can be found at http://www.exampler.com/testing-com/writings/short-catalog.pdf. See http://
www.exampler.com/testing-com/writings.html for more of his papers.

13

struct -2

14

Some Heuristics

2.8 A class should capture one and only one key abstraction

2.9 Keep related data and behavior in one place

15

3.3 Beware of classes that have many accessor
method defined in their public interface

Related data & operations are may not be in same place

Node Class - Just Accessor methods

16

Instance Variables
next
previous
data

Methods
next
next:
previous
previous:
data
data:

Another Test

17

Write 1-3 sentences describing the class

Are there any actions in the description?

If not operations and data may not be in same place

Linked List Example

18

A C F

Operations
Add elements
Test if list contains an element
printOn:
size

includes:

19

LinkedList>>includes: anObject
| current |
head isNil ifTrue: [^false];
current := head.
[current notNil] whileTrue: [

current data = anObject ifTrue: [^true].
current := current next].

^return false

includes: with Node

20

LinkedList>>includes: anObject
head isNil ifTrue: [^false].
^head includes: anObject

Node>>includes: anObject
data = anObject ifTrue: [^true].
next ifNil: [^false].
^next includes: anObject

A C F

includes: F

includes: with Node

21

LinkedList>>includes: anObject
head isNil ifTrue: [^false].
^head includes: anObject

Node>>includes: anObject
data = anObject ifTrue: [^true].
next ifNil: [^false].
^next includes: anObject

A C F

includes: F

includes: with Node

22

LinkedList>>includes: anObject
head isNil ifTrue: [^false].
^head includes: anObject

Node>>includes: anObject
data = anObject ifTrue: [^true].
next ifNil: [^false].
^next includes: anObject

A C F

includes: F

includes: with Node

23

LinkedList>>includes: anObject
head isNil ifTrue: [^false].
^head includes: anObject

Node>>includes: anObject
data = anObject ifTrue: [^true].
next ifNil: [^false].
^next includes: anObject

A C F

includes: F

includes: with Node

24

LinkedList>>includes: anObject
head isNil ifTrue: [^false].
^head includes: anObject

Node>>includes: anObject
data = anObject ifTrue: [^true].
next ifNil: [^false].
^next includes: anObject

A C F

includes: F

includes: with Node

25

LinkedList>>includes: anObject
head isNil ifTrue: [^false].
^head includes: anObject

Node>>includes: anObject
data = anObject ifTrue: [^true].
next ifNil: [^false].
^next includes: anObject

A C F

includes: F

includes: & Nil node

26

LinkedList>>includes: anObject
^head includes: anObject

Node>>includes: anObject
data = anObject ifTrue: [^true].
^next includes: anObject

NilNode>>includes: anObject
^false

A C F

