
CS 535 Object-Oriented Programming & Design
Fall Semester, 2010

Doc 10 Exceptions, Streams & Files
Oct 5 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

2

Exceptions

Basic Issues

3

How are exceptions raised (started)
How to handle exceptions
What can one do when handling exceptions
How is the correct handler found for an exception

Basic Handling of Exceptions

4

 [ProtectedBlock]
 on: ExceptionList
 do: [:exception | HandlerBlock]

[numerator := 5.
denominator := 0.0.
numerator / denominator]
 on: ZeroDivide
 do:
 [:exception |
 Transcript
 show: exception description;
 cr]

Unlike Java, in Smalltalk zero divide by both integer and floats cause a zero divide exception to be raised

Catching Multiple Exceptions

5

Use a comma or ExceptionSets

[1/0]
 on: Warning , ZeroDivide
 do: [:exception | code here]

| exceptions |
exceptions := ExceptionSet with: Warning with: ZeroDivide.
[1/0]
 on: exceptions
 do: [:exception | code here]

ensure:

6

[block] ensure: [clean up block]

Ensure that the clean up block will be done

[[10/0] ensure: [Transcript show: 'In ensure'; cr]]
 on: ZeroDivide
 do: [:exception | Transcript show: 'In handler';cr]

Example

If block ends due to an exception
Execute handler for exception
Execute clean up block

Output in Transcript

In handler
In ensure

Your code should not depend on the order of execution of the handler and clean up block

ifCurtailed:

7

[block] ifCurtailed: [clean up block]

Clean up block is done only if [block] ends abnormally

Raising Exceptions

8

Implicitly Raised Exceptions

12 / 0

Explicitly Raised Exceptions

Send message to an exception class

Warning raiseSignal: 'This string is the signal description'
Error raiseSignal
Error raiseSignal: 'Problem here'

Object Methods That Raise Exception

9

self error: 'Error message'
Simplest way to raise an exception

self halt
self halt: 'Message"

Raises Halt exception.
Allows user to invoke debugger or resume

self shouldNotImplement
Used in subclasses in inherited methods that do not belong in the subclass

self subclassResponsibility
Used in methods to declare them abstract
Indicated subclasses must implement this method

Exceptions are Classes

10

GenericException

Exception

Error

MessageNotUnderstood

Notification Warning

Error

Normal Exception behavior
Your exceptions should subclass Error

Notification

Something interesting has occurred
If it is not handled, it will pass by without effect

Warning

An unusual event the user needs to know about
Asks the user if the program should continue

MessageNotUnderstood

A method was sent to an
object that does not implement it

Exception Default Action

11

All exceptions have default action

What happens if exception is not caught in on:do:

Warning Default Behavior

12

Warning raiseSignal: 'An error occured, continue?'.

Result

Warning with handler

13

[Warning raiseSignal: 'Hi Mom'.
Transcript show: 'End']
 on: Warning
 do: [:exception | Transcript show: 'Handler']

Output in Transcript

Handler

No dialog window opens as the default behavior is not done when a warning is raised in a on:do: block

Finding the Exception Handler

14

When an exception is raised the enclosing handlers are searched

Start with the code that raised the exception
Search the "closest" enclosing handler first
Continue searching the enclosing handers

The first handler that deals with the exception is used

If no handlers handle the exception the exception's default action is done

[[1/0]
 on: ZeroDivide
 do: [:exception | Transcript show: 'First']]
 on: ZeroDivide
 do: [:exception | Transcript show: 'Second']

Inheritance and Exception

15

All subexceptions are caught by an exception in on:do:

ZeroDivide is a subclass of Error

The ZeroDivide exception will be caught in the following

[1/0]
 on: Error
 do:
 [:exception |
 Transcript
 show: exception description;
 cr]

Resumable Exceptions

16

| result |
[result := 10 / 0 + 5.
Transcript show: result printString]
 on: ZeroDivide
 do: [:exception | exception resume: 1]

Output in Transcript

6

| result |
[result := 10/0.
Transcript show: result printString]
 on: ZeroDivide
 do:
 [:exception |
 exception resume]

Output in Transcript

nil

retry

17

| x y result |
x := 10.
y := 0.
[result := x / y.
Transcript show: result printString]
 on: ZeroDivide
 do:
 [:exception |
 y := 1.
 exception retry]

Output in Transcript

10

Creating Your Own Exceptions

18

Subclass the correct existing Exception
Almost always Error

If you want the exception to be resumable

Make method isResumable return true

If you want non-standard default behavior

Override the method defaultAction

Common Mistake

19

LinkedList>>at: anIndex
Requirement: throw an exception if anIndex < 1 or anIndex > List size

[(anIndex < 1 or: [anIndex > self size]) ifTrue: [self error: 'Out of bounds'].
current := self head.
[anIndex -1] timesRepeat: [current := current next].
^current value.
]
 on: Error
 do: [:exception |

Transcript show: 'error'.
^nil]

Point of Exceptions

20

Something unexpected occurred in your method

Your method can not handle the problem

Raise exception to inform caller
you can not handle the request
do to exceptional condition

Caller
May have to cancel operation
Be able to fix error
let someone else handle the problem

21

Streams

22

Streams

Iterate or traverse over
 • Sequenceable Collections
 • File contents

Maintains pointer to current position in collection

Stream

PositionableStream

ReadStream WriteStream

ReadWriteStream

Stream Methods

23

next Returns the next element

next: n Returns the n next elements

nextPut: anElement Inserts anElement at next position

nextPutAll: aCollection
Inserts collection elements starting at the next
position

contents Returns all the elements

flush Write any unwritten information

atEnd true if at the end of the collection

cr space tab crtab Write the specified white space

print: anObject Print anObject on the stream

If these look familiar the Transcript is a stream

PeekableStream Methods

24

skip: n Increases the position by n

skipTo: anElement Increases the position to after
anElement

upToSeparator Return contents up to a separator, skip
over separtor

reset Set position to 0

peek Return next element, position not
changed

peekFor: anObject Return true if next element = anObject

WriteStream Examples

25

| x |
x := WriteStream on: String new.
x
 nextPut: $A;
 nextPutAll: ' Cat in the Hat';
 nextPutAll: ' Comes Back';
 contents

Result
'A Cat in the Hat Comes Back'

| x |
x := WriteStream on: Array new.
x
 nextPut: 5;
 nextPut: 'cat';
 nextPut: $a.
x contents

Result
#(5 'cat' $a)

nextPut: & nextPutAll:

26

x := WriteStream on: String new.
x nextPut: 56. “Runtime error, must be character”
x nextPut: 56 printString. “Error, string is not a character”
x print: 56 “OK”
x nextPutAll: 56 printString “OK”

nextPut:
adds one element to the stream

nextPutAll:
Argument must be a collection
Elements of the argument are added one at a time to the collection

Explain This

27

| x |
x := WriteStream on: Array new.
x
 nextPut: 'cat';
 nextPut: 'in';
 nextPut: 'hat'.
x contents

Result
 #('cat' 'in' 'hat')

| x |
x := WriteStream on: Array new.
x
 nextPutAll: 'cat';
 nextPutAll: 'in';
 nextPutAll: 'hat'.
x contents

Result
#($c $a $t $i $n $h $a $t)

Repositioning of the stream

28

(WriteStream on: String new)
 nextPutAll: 'Cat in the Hat';
 position: 4;
 nextPutAll: 'Comes Back';
 contents

Result
 'Cat Comes Back'

ReadStream Examples

29

Transcript

| x |
x := ReadStream
 on: 'Cat-in-the-Hat-Comes-Back'.

Transcript

 print: x next; cr; C

 print: x peek; cr; a

 print: x next; cr; a

 show: (x upTo: $e); cr; t-in-th

 show: (x upToAll: 'Comes'); cr; -Hat-

 show: x upToEnd; cr; Comes-Back

 show: x contents Cat-in-the-Hat-Comes-Back

Note that in the output we do not see the $e from the x upTo: $e, but do see the 'Comes' in the output from the x upToAll:
'Comes'. upTo: sets the position after the element ($e). upToAll: sets the position at the start of the indicated collection

ReadStream on an Array

30

Transcript

| x |
x := ReadStream on:
 #('Cat' 'in' 'the' 'Hat' 'Comes' 'Back' 'Again' 'by' 'Zeus').

Transcript

 show: x next; cr; Cat

 show: x peek; cr; in

 show: x next; cr; in

 show: (x upTo: 'Comes'); cr; #('the' 'Hat')

 show: (x upToAll: #('Again' 'by')); cr; #('Back')

 show: x upToEnd #('Again' 'by' 'Zeus')

ReadStream

31

The elements returned by the stream are elements in the underlying collection

upTo: requires elements of the underlying collection

upToAll: requires a collection of elements of the underlying collection

next returns an element of the underlying stream

Most uses have String as underlying collection

32

Files

33

Example

| name file fileWrite fileRead|
name := 'sampleFile'.
file := name asFilename.
fileWrite := file writeStream.
fileWrite
 nextPutAll: 'Hello world';
 nextPutAll: 'How are you?';
 cr;
 close.
fileRead := file readStream.
Transcript show: fileRead contents.
fileRead close.
fileAppend := file appendStream.
fileAppend
 nextPutAll: 'I am well';
 cr;
 close.
Transcript show: file contentsOfEntireFile

File Objects

34

Filename named: 'filename'

'filename' asFilename

Both create a Filename object on a file

The filename string is a
file in the current directory or
Full path to the file

Writing to a File

35

Filename>>writeStream
Opens a write stream on the file
If file does not exits create the file
If file does exist erase current contents

Filename>>appendStream
Returns a write stream on the file
If file does not exits create the file
If file does exist the stream appends to the contents

Filename>>readStream
Returns a read stream on the file
File must exist
Stream reads from the beginning of the file

Close your Files

36

| name file fileWrite |
name := 'sampleFile'.
file := name asFilename.
[fileWrite := file writeStream.
1 /0.
fileWrite
 nextPutAll: 'Hello world';
 nextPutAll: 'How are you?';
 cr.]
 ensure: [fileWrite close].

Always close streams on files

If you do not close the stream, the VM keeps the file open

Some File Operations in Filename

37

isDirectory Returns true if Filename object is a directory

fileSize Returns size of the file represented by filename object

delete Delete the file or directory represented by filename object

directoryContents Returns the contents of a filename object that represents a
directory

makeDirectory Make the filename object a directory.

