CS 520 Advanced Programming Languages
Fall Semester, 2009
Doc 21 Scala Actors
Dec 3, 2009

Copyright ©, All rights reserved. 2009 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Reference

Programming in Scala, Odersky, Spoon, Venners, Artima Press, 2008

Reading

Programming in Scala, Odersky, Spoon, Venners, Artima Press, 2008
Chapters 30

First Example

Import scala.actors.Actor val a = new Example("a")
a.start
class Example(name: String) extends Actor {
def act = {
for (k <- 1 to 10) { Output
printin(name + " " + k) 3 1

} a2

} a3

} ad
ad

ab

a’

ad

a9

a10

3

act is sort of like run in thread. One does not call it directly. One call start which registers the actor with the scheduler and act is
called from a different thread.

Showing Concurrency

scala> new Example("a").start; new Example("b").start
a1
az2
a3
a4
ad
ab
ar
ad

scala>b 1
b2
a9
b3
a 10
b4
b5
etc

Yes the two actors are running in different threads.

Multiple Starts allowed

iImport scala.actors.Actor

class Example extends Actor {
def act = printIn("run")

val test = new Example
test.start
test.start

Output
run
run

Which is unlike the run method in a thread

Other Concurrent Examples

Import scala.actors.Actor

class Example(name: String) extends Actor {
def act = {

for (k <- 1 to 10) {
printin(name + " " + k)

object Main extends Application {
val a = new Example("a")
val b = new Example("b")
a.start
b.start

al

b1
a2
Run as Application b 2
scalac example.scala, P 3
scala Main a3
b 4
Output is interleaved b5
ad

Run in interpreter

scala

scala>:load example.scala
scala> Main

Output is interleaved first time
Output is not interleave on
second load & run

Singleton Object Actor

Import scala.actors.Actor SampleActor.start
object SampleActor extends Actor {
def act = {
for (k <- 1 to 10) {
printin("A " + k)
}

Utility actor Method

Import scala.actors.Actor Output
Hello 1
val x = Actor.actor { Hello 2
for (k <- 1 to 10) { Hello 3
printin("Hello " + k) Hello 4
} Hello 5
} Hello 6
Hello 7
Hello 8
Hello 9

Hello 10

8

The contents of the actor method are the act method of the new actor. The new actor is automatically started

Utility actor Method

Import scala.actors.Actor.__ Shorter version

val x = actor { Commonly used

for (k <- 1 to 10) {
printin("Hello " + k)

}

Messages

Asynchronous

Filtering
One-way

Mailbox
Synchronous

Futures

Message Basics

Actor

[Mailbox |

Each actor has a mailbox. The outside world can send the actor messages, which are placed in the mailbox. The actor then can
remove and read messages in the mailbox.

Message Example

import scala.actors.Actor _
val a = new Basic

class Basic extends Actor { a.start
def act = { al’"hi" //[send a message
receive { al12 /lanother
case mail => message

rintin("l got mail " + mail
\ P g) Output

\ | got mail hi

12

receive reads one message from the actors mailbox. act only runs once so we only read one message from the mailbox. The
second message remains in the mailbox.

Reading Repeatedly

Import scala.actors.Actor

class Basic extends Actor {
def act = {
while (true) {
receive {
case mail =>
printin("l got mail " + mail)

}

val a = new Basic
a.start

a!l"hi"

al12

a ! List(1,2,3)

Output

| got mail hi
| got mail 12
| got mail List(1, 2, 3)

We can send anything in the message.

Infinite Loop Shortcut

Import scala.actors.Actor
Import scala.actors.Actor.
class Basic extends Actor {

Import scala.actors.Actor

class Basic extends Actor {

def act = { def ellct ={
Actor.loop { oop { |
' receive {
receive { |
il = case mail =>
case mail => as
printin("l got mail " + mail) | printin("l got mai
mail)
} }
}
} }
}

Or if you prefer Recursion

Import scala.actors.Actor

class Basic extends Actor {
def act = {
receive {
case mail => {
printin("l got mail " + mail)
act

exit

Import scala.actors.Actor

_ val a = new Basic
Import scala.actors.Actor.

a.start
. a ! Ilhill
class Basic extends Actor { .
a.exit
def act = { . .
a ! "are you there?
loop {
receive {
case mail =>
printin("l got mail " + mail) | got mail hi
} scala.actors.ExitActorException
} | got mail are you there?
}

6

exit does "kill" the actor, but it has to be called in the thread running the actor. So the above code does not really work. The
actor continues to run.

How to use exit

Import scala.actors.Actor val a = new Basic
Import scala.actors.Actor.__ a.start
a!"hi"
class Basic extends Actor { a!l'die"
def act = { a ! "are you there?"
loop {
receive {
case "die" => exit Output
case mail => | got mail hi

printin("l got mail " + mail)

The Syntax

receive {case mail => printin("l got mail " + mail)}

A

\4

val partialFunction: PartialFunction[Any,Unit] =
{case mail => printin("l got mail " + mail)}
receive (partialFunction)

18

receive is a method. | for one am glad for the syntactic sugar of the top version

Mailbox

Import scala.actors.Actor
Import scala.actors.Actor.

class MailboxExample extends Actor {

def act = {
loop {
receive {
case "size" => printin(mailboxSize)
case "quit" => {
printin("goodby")
exit
}
}
}
}

val test = new MailboxExample
test.start

test! 10
test ! "cat"
test ! "size"
test! 12
test ! "size"
test ! "quit”
2
3
goodby

Asynchronous - One Way

Message
Receiver| < Sender

20

The message is sent. No reply is sent to the sender and the sender does not wait for a reply

Asynchronous - One Way - !

Import scala.actors.Actor val a = new Basic
Import scala.actors.Actor.__ a.start
a!"hi"
class Basic extends Actor { a!l'die"
def act = { a ! "are you there?"
loop {
receive {
case "die" => exit Output
case mail => | got mail hi

printin("l got mail " + mail)

21

I sends an asynchronous message.

Asynchronous - With Separate Return

Message
Receiver| €« Sender

Time

Message
Receiver > | Sender

22

Asynchronous - Return to sender

Import scala.actors.Actor.
class Requester(adder: Actor) extends Actor {

class Adder extends Actor { def act = {
def act = { adder ! 3
l00p { receive {
receive { case X: Int => printIn("Answer " + x)
case X: Int =>sender ! x + }
) }
\ }
}
} val a = new Adder
a.start
val sender = new Requester(a)
sender.start

23

The sender method returns a reference to the acter/thread that send the current message

Asynchronous - With return address

. class Receiver extends Actor {
Import scala.actors.Actor.

def act = {
class Adder extends Actor { Ioopr{eceive :
e ?gf); é case X: Int =>
. printin("Answer "
receive { - %)
case (x: Int, receiver:Actor) => \
receiver | x + 1 \
} }
} }
}

24

Using the Example

val a = new Adder Output
Answer 13

a.start

: Answer 4
val sender = new Receiver
sender.start
a! (12, sender)
al12

a! (3, sender)
a ! "cat”

25

Receiver

Synchronous

Message

Time

Response

26

Sender

Sender

Sender blocks until receiver replies

Synchronous Messages -!?

Import scala.actors.Actor.

import scala.actors.Actor val a = new Adder
a.start
class Adder extends Actor {
def act = { val answer: Any =a !? 3
var answer:Int =0
loop { a.exit
receive {

case x:Int =>reply(x + 1)

27

1?7 blocks until it receives an answer

Synchronous with Future

Receiver

Time ,
: Receiver

Message
= Sender
—
Future
Actual Result Sender
> [Future

28

Sender block when it requests a value from the future until the value is actually available.

Synchronous - With Future

Import scala.actors.Actor. Import scala.actors.Future
Import scala.actors.Actor val a = new Adder
a.start
class Adder extends Actor {
def act = { val answer: Future[Any]=a !l 3
var answer:Int =0
loop { val start = System.currentTimeMillis()
receive { val value: Any = answer()
case x:Int =>{ val end = System.currentTimeMillis()
Thread.sleep(1000)
reply(x + 1) a.exit
} printin(end - start)
}
) Output
/ 1005

29

Il returns immediately. However it returns a future object. When you try to access the value in the future the code blocks until
the value is available

Future isSet

val a = new Adder
a.start

val answer: Future[Any]=all 3
var value: Any =0
{if (answer.isSet)
value = answer()
else
printin("not ready")}

30

Synchronous with timeout

val a = new Adder
a.start
val millisecondsToWait = 1500
val answer: Option[Any] = a !?(millisecondsToWait,3)
if (lanswer.isEmpty)
printin(answer.get)

31

React & Receive

react
Reads a message from the mail box
Does not return
Allows scheduler to use one thread to handle multiple actors

receive
Reads a message from the mail box
One thread per actor

32

React verses Recelve

class Receiver extends Actor {
def act = {
printin("Before receive")
receive {
case _ => printin("receive test")

}

printin("After receive")

33

val a = new Receiver
a.start
al

Output
Before receive
receive test
After receive

React verses Recelve

class Reactor extends Actor {
def act = {
printin("Before react")
react {
case _ => printIn("React test")

}
printin("After react")

34

val a = new Reactor
a.start
al

Output
Before react
React test

Mutable Message data

Import scala.actors.Actor var data = Array(2,1)

val actor = new MutableExample
class MutableExample extends Actor {

actor.start
def act = { actor ! data
receive {
case x:Array[Int] => x(0) = 30 printin(data(0))
}
\) Output
} 10

35

The data in messages is shared between

Don't use mutable data in messages

36

Sieve Example - Collector

Import scala.actors.Actor
Import scala.actors.Actor.

class Collector extends Actor {

def act = {
loop {
receive {
case x:Int => printin(x)
case "quit" => exit
}
!
}

37

Sieve Example - Filter

class Filter(primes:List[Int],endActor:Collector) extends Actor {
val prime: Int = primes.head
val next: Actor = if (primes.length > 1)
new Filter(primes.tail, endActor)
else endActor

next.start
def act = {
loop {
receive {
case x:Int => if (x%prime != 0) next ! x
case "quit" =>{
printin("goodby")
next ! "quit"
exit
}
}
}
}

38

Sieve Example - Using

val smallPrimes = List(2,3,5,7,11,13,17,23)
val seive = new Filter(smallPrimes, new Collector)
seive.start
for (x <- 2 to 100)
seive ! x
seive ! "quit"

39

Remote Actors

Local Actors Remote Actors
Run in same JVM Run in different JVM
May be run in separate thread May be run on machines

Messages sent to Remote Actors
Must be serializable

40

Remote Actor Server

Import scala.actors.Actor Starting the server
Import scala.actors.Actor.
import scala.actors.remote.RemoteActor val port = 8838
val server = new RemoteAdder(port)
class RemoteAdder(port: Int) extends Actor { server.start()
def act() {

RemoteActor.alive(port)
RemoteActor.register('Adder, self)
printin("go")
loop {
receive {
case n:Int =>reply(n + 1)

41

Based on http://youshottheinvisibleswordsman.co.uk/2009/04/01/remoteactor-in-scala/

Accessing the Server

Import scala.actors.remote.RemoteActor
Import scala.actors.remote.Node

val remoteport = 8888

val peer = Node("10.0.1.192", remoteport)
val server = RemoteActor.select(peer, 'Adder)
val answer = server !? 10

printin(answer)

42

