
CS 520 Advanced Programming Languages
Fall Semester, 2009
Doc 21 Scala Actors

Dec 3, 2009

Copyright ©, All rights reserved. 2009 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Reference

2

Programming in Scala, Odersky, Spoon, Venners, Artima Press, 2008

Reading

Programming in Scala, Odersky, Spoon, Venners, Artima Press, 2008
Chapters 30

First Example

3

import scala.actors.Actor

class Example(name: String) extends Actor {
 def act = {
 for (k <- 1 to 10) {
 println(name + " " + k)
 }
 }
}

val a = new Example("a")
a.start

a 1
a 2
a 3
a 4
a 5
a 6
a 7
a 8
a 9
a 10

Output

act is sort of like run in thread. One does not call it directly. One call start which registers the actor with the scheduler and act is
called from a different thread.

 Showing Concurrency

4

scala> new Example("a").start; new Example("b").start
a 1
a 2
a 3
a 4
a 5
a 6
a 7
a 8

scala> b 1
b 2
a 9
b 3
a 10
b 4
b 5
etc

Yes the two actors are running in different threads.

Multiple Starts allowed

5

import scala.actors.Actor

class Example extends Actor {
 def act = println("run")
}

val test = new Example
test.start
test.start

Output
run
run

Which is unlike the run method in a thread

Other Concurrent Examples

6

import scala.actors.Actor

class Example(name: String) extends Actor {
 def act = {
 for (k <- 1 to 10) {
 println(name + " " + k)
 }
 }
}

object Main extends Application {
 val a = new Example("a")
 val b = new Example("b")
 a.start
 b.start
}

Run as Application
scalac example.scala
scala Main

Output is interleaved

Run in interpreter
scala
scala>:load example.scala
scala> Main

Output is interleaved first time
Output is not interleave on

second load & run

a 1
b 1
a 2
b 2
b 3
a 3
b 4
b 5
a 4

Singleton Object Actor

7

import scala.actors.Actor

object SampleActor extends Actor {
 def act = {
 for (k <- 1 to 10) {
 println("A " + k)
 }
 }
}

SampleActor.start

Utility actor Method

8

import scala.actors.Actor

val x = Actor.actor {
 for (k <- 1 to 10) {
 println("Hello " + k)
 }
 }

Output
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5
Hello 6
Hello 7
Hello 8
Hello 9
Hello 10

The contents of the actor method are the act method of the new actor. The new actor is automatically started

Utility actor Method

9

import scala.actors.Actor._

val x = actor {
 for (k <- 1 to 10) {
 println("Hello " + k)
 }
 }

Shorter version

Commonly used

Messages

10

Asynchronous
One-way

Synchronous
Futures

Filtering

Mailbox

Message Basics

11

Actor

Mailbox

Each actor has a mailbox. The outside world can send the actor messages, which are placed in the mailbox. The actor then can
remove and read messages in the mailbox.

Message Example

12

import scala.actors.Actor

class Basic extends Actor {
 def act = {
 receive {
 case mail =>
 println("I got mail " + mail)
 }
 }
}

val a = new Basic
a.start
a ! "hi" //send a message
a ! 12 //another
message

Output
I got mail hi

receive reads one message from the actors mailbox. act only runs once so we only read one message from the mailbox. The
second message remains in the mailbox.

Reading Repeatedly

13

import scala.actors.Actor

class Basic extends Actor {
 def act = {
 while (true) {
 receive {
 case mail =>

println("I got mail " + mail)
 }
 }
 }
}

val a = new Basic
a.start
a ! "hi"
a ! 12
a ! List(1,2,3)

I got mail hi
I got mail 12
I got mail List(1, 2, 3)

Output

We can send anything in the message.

Infinite Loop Shortcut

14

import scala.actors.Actor

class Basic extends Actor {
 def act = {
 Actor.loop {
 receive {
 case mail =>
 println("I got mail " + mail)
 }
 }
 }
}

import scala.actors.Actor
import scala.actors.Actor._
class Basic extends Actor {
 def act = {
 loop {
 receive {
 case mail =>
 println("I got mail " +
mail)
 }
 }
 }
}

Or if you prefer Recursion

15

import scala.actors.Actor

class Basic extends Actor {
 def act = {
 receive {
 case mail => {
 println("I got mail " + mail)
 act
 }
 }
 }
}

exit

16

import scala.actors.Actor
import scala.actors.Actor._

class Basic extends Actor {
 def act = {
 loop {
 receive {
 case mail =>
 println("I got mail " + mail)
 }
 }
 }
}

val a = new Basic
a.start
a ! "hi"
a.exit
a ! "are you there?"

I got mail hi
scala.actors.ExitActorException
I got mail are you there?

exit does "kill" the actor, but it has to be called in the thread running the actor. So the above code does not really work. The
actor continues to run.

How to use exit

17

import scala.actors.Actor
import scala.actors.Actor._

class Basic extends Actor {
 def act = {
 loop {
 receive {
 case "die" => exit
 case mail =>
 println("I got mail " + mail)
 }
 }
 }
}

val a = new Basic
a.start
a ! "hi"
a ! "die"
a ! "are you there?"

Output
I got mail hi

The Syntax

18

 val partialFunction: PartialFunction[Any,Unit] =
{case mail => println("I got mail " + mail)}

 receive (partialFunction)

receive {case mail => println("I got mail " + mail)}

receive is a method. I for one am glad for the syntactic sugar of the top version

Mailbox

19

import scala.actors.Actor
import scala.actors.Actor._

class MailboxExample extends Actor {
 def act = {
 loop {
 receive {
 case "size" => println(mailboxSize)
 case "quit" => {
 println("goodby")
 exit
 }
 }
 }
 }
}

val test = new MailboxExample
test.start
test ! 10
test ! "cat"
test ! "size"
test ! 12
test ! "size"
test ! "quit"

2
3
goodby

Asynchronous - One Way

20

Receiver Sender
Message

The message is sent. No reply is sent to the sender and the sender does not wait for a reply

Asynchronous - One Way - !

21

import scala.actors.Actor
import scala.actors.Actor._

class Basic extends Actor {
 def act = {
 loop {
 receive {
 case "die" => exit
 case mail =>
 println("I got mail " + mail)
 }
 }
 }
}

val a = new Basic
a.start
a ! "hi"
a ! "die"
a ! "are you there?"

Output
I got mail hi

! sends an asynchronous message.

Asynchronous - With Separate Return

22

Receiver Sender

Receiver Sender

Time

Message

Message

Asynchronous - Return to sender

23

import scala.actors.Actor._

class Adder extends Actor {
 def act = {
 loop {
 receive {
 case x: Int => sender ! x + 1
 }
 }
 }
}

class Requester(adder: Actor) extends Actor {
 def act = {
 adder ! 3
 receive {
 case x: Int => println("Answer " + x)
 }
 }
}

val a = new Adder
a.start
val sender = new Requester(a)
sender.start

The sender method returns a reference to the acter/thread that send the current message

Asynchronous - With return address

24

import scala.actors.Actor._

class Adder extends Actor {
 def act = {
 loop {
 receive {
 case (x: Int, receiver:Actor) =>
 receiver ! x + 1
 }
 }
 }
}

class Receiver extends Actor {
 def act = {
 loop {
 receive {
 case x: Int =>
 println("Answer "
+ x)
 }
 }
 }
}

Using the Example

25

val a = new Adder
a.start
val sender = new Receiver
sender.start
a ! (12, sender)
a ! 12
a ! (3, sender)
a ! "cat"

Output
Answer 13
Answer 4

Synchronous

26

Receiver Sender

Sender

Time

Message

Response

Sender blocks until receiver replies

Synchronous Messages - !?

27

import scala.actors.Actor._
import scala.actors.Actor

class Adder extends Actor {
 def act = {
 var answer:Int = 0
 loop {
 receive {
 case x:Int => reply(x + 1)
 }
 }
 }
}

val a = new Adder
a.start

val answer: Any = a !? 3

a.exit

!? blocks until it receives an answer

Synchronous with Future

28

Receiver Sender

Sender
Time

Message

Future

FutureReceiver
Actual Result

Sender block when it requests a value from the future until the value is actually available.

Synchronous - With Future

29

import scala.actors.Actor._
import scala.actors.Actor

class Adder extends Actor {
 def act = {
 var answer:Int = 0
 loop {
 receive {
 case x:Int => {
 Thread.sleep(1000)
 reply(x + 1)
 }
 }
 }
 }
}

import scala.actors.Future
val a = new Adder
a.start

val answer: Future[Any] = a !! 3

val start = System.currentTimeMillis()
val value: Any = answer()
val end = System.currentTimeMillis()

a.exit
println(end - start)

Output

1005

!! returns immediately. However it returns a future object. When you try to access the value in the future the code blocks until
the value is available

Future isSet

30

val a = new Adder
a.start

val answer: Future[Any] = a !! 3
var value: Any = 0
{if (answer.isSet)
 value = answer()
else
 println("not ready")}

Synchronous with timeout

31

val a = new Adder
a.start
val millisecondsToWait = 1500
val answer: Option[Any] = a !?(millisecondsToWait,3)
if (!answer.isEmpty)
 println(answer.get)

React & Receive

32

react
Reads a message from the mail box
Does not return
Allows scheduler to use one thread to handle multiple actors

receive
Reads a message from the mail box
One thread per actor

React verses Receive

33

class Receiver extends Actor {
 def act = {
 println("Before receive")
 receive {
 case _ => println("receive test")
 }
 println("After receive")
 }
}

val a = new Receiver
a.start
a ! 1

Output
Before receive
receive test
After receive

React verses Receive

34

class Reactor extends Actor {
 def act = {
 println("Before react")
 react {
 case _ => println("React test")
 }
 println("After react")
 }
}

val a = new Reactor
a.start
a ! 1

Output
Before react
React test

Mutable Message data

35

import scala.actors.Actor

class MutableExample extends Actor {
 def act = {
 receive {
 case x:Array[Int] => x(0) = 30
 }
 }
 }
}

var data = Array(2,1)
val actor = new MutableExample
actor.start
actor ! data

println(data(0))

Output
10

The data in messages is shared between

36

Don't use mutable data in messages

37

Sieve Example - Collector

import scala.actors.Actor
import scala.actors.Actor._

class Collector extends Actor {
 def act = {
 loop {
 receive {
 case x:Int => println(x)
 case "quit" => exit
 }
 }
 }
}

Sieve Example - Filter

38

class Filter(primes:List[Int],endActor:Collector) extends Actor {
 val prime: Int = primes.head
 val next: Actor = if (primes.length > 1)
 new Filter(primes.tail, endActor)
 else endActor
 next.start
 def act = {
 loop {
 receive {
 case x:Int => if (x%prime != 0) next ! x
 case "quit" => {
 println("goodby")
 next ! "quit"
 exit
 }
 }
 }
 }
}

Sieve Example - Using

39

val smallPrimes = List(2,3,5,7,11,13,17,23)
val seive = new Filter(smallPrimes, new Collector)
seive.start
for (x <- 2 to 100)
 seive ! x
seive ! "quit"

Remote Actors

40

Local Actors
Run in same JVM
May be run in separate thread

Remote Actors
Run in different JVM
May be run on machines

Messages sent to Remote Actors
Must be serializable

Remote Actor Server

41

import scala.actors.Actor
import scala.actors.Actor._
import scala.actors.remote.RemoteActor

class RemoteAdder(port: Int) extends Actor {
 def act() {
 RemoteActor.alive(port)
 RemoteActor.register('Adder, self)
 println("go")
 loop {
 receive {
 case n:Int =>reply(n + 1)
 }
 }
 }
}

val port = 8888
val server = new RemoteAdder(port)
server.start()

Starting the server

Based on http://youshottheinvisibleswordsman.co.uk/2009/04/01/remoteactor-in-scala/

Accessing the Server

42

import scala.actors.remote.RemoteActor
import scala.actors.remote.Node

val remoteport = 8888
val peer = Node("10.0.1.192", remoteport)
val server = RemoteActor.select(peer, 'Adder)
val answer = server !? 10
println(answer)

