
CS 683 Emerging Technologies
Fall Semester, 2008

Doc 4 Distributed Exceptions
Sept 11 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

Programming Erlang: Software for a Concurrent World, Armstrong, Chapter 9.

Erlang Documentation

Reading

Programming Erlang: Software for a Concurrent World, Armstrong, Chapter 9.

Ways a Process can Die

3

Normal
Process code ends

Exceptions
error, throw, exit

exit(kill)
Very lethal

Murder
exit(Pid, Reason) ends process with Pid

Linking Processes

4

Pid = spawn_link(fun() -> ... end)

Links current process with new process

link(APid)

Links current process with process with APid

Bi-directional Links

One-way Link

erlang:monitor(process, Pid)
if Pid dies current process is notified

Links and Death

5

Let processes A & B be linked

If either process dies unnaturally it sends an exit signal to the other process

An exit signal kills the process it is sent to

Except if the process is a system process

An exit signal puts a message in the process mailbox

However if exit(kill) was the original cause of death the other process will die even if it
is a system process (but examples don't support this)

Crime Does Pay

6

Let processes A & B be linked

If A kills B using exit(Pid, Reason) A does not die

If B kills A using exit(Pid, Reason) B does not die

System Process

7

A process becomes a system process by calling the function

process_flag(trap_exit,true)

Example

8

-module (exitTests).
-export ([start/1]).

start (Reason) ->
 A = spawn(fun() -> a() end),
 B = spawn(fun() -> b(A, Reason) end).

a () ->
 process_flag(trap_exit,true),
 read(a).

b (Parent,Reason) ->
 link(Parent),
 case Reason of
 normal -> true;
 error -> erlang:error(raiseError);
 throw -> throw(raiseThrow);
 exit -> exit(exit);
 kill -> exit(kill)
 end.

read (Pid) ->
 io:format("Read For ~p ~n", [Pid]),
 receive
 Any ->
 io:format("Pid ~p received ~p~n",
[Pid,Any]),
 read(Pid)
 after 1000 ->
 io:format("Process ~p time out~n",
[Pid])
 end.

Example

9

15> exitTests:start(normal).
Read For a
<0.146.0>
Pid a received {'EXIT',<0.146.0>,normal}
Read For a
Process a time out

16> exitTests:start(throw).
Read For a
<0.152.0>
Pid a received {'EXIT',<0.152.0>,{{nocatch,raiseThrow},[{exitTests,b,2}]}}

=ERROR REPORT==== 10-Sep-2008::21:36:05 ===
Error in process <0.152.0> with exit value: {{nocatch,raiseThrow},[{exitTests,b,2}]}

Read For a

Example

10

16> exitTests:start(kill).
Read For a
<0.149.0>
Pid a received {'EXIT',<0.149.0>,kill}
Read For a
Process a time out

This does not match what the book indicates should happen.

Program Idioms

11

I don't care if a Process dies

Pid = spawn(fun() -> ... end)

I want to die if a process I create dies

Pid = spawn_link(fun() -> ... end)

I want to handle errors if a process I create dies

process_flag(trap_exit, true),
Pid = spawn_link((fun() -> ... end),
....

receive
{'EXIT', SomePid, Reason} ->
%handle the problem
...

