
CS 683 Emerging Technologies
Fall Semester, 2008

Doc 3 Erlang Exceptions & Concurrency
Sept 9 2008

Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

References

2

Programming Erlang: Software for a Concurrent World, Armstrong, Chapter 4, 8, 10.

Erlang Documentation

Reading

Programming Erlang: Software for a Concurrent World, Armstrong, Chapter 4, 8.

Chapter 6 contains useful information about running and debugging Erlang code.
You will find it very useful

Section 5.4 contains some useful information. The rest of chapter 5 you can skip for now.

Raising Exceptions

3

exit(Why)
throw(Why)
erlang:error(Why)

factorial(1) -> 1;
factorial(N) when N < 1 ->
 erlang:error({factorialNonPositiveArgument, N});
factorial(N) ->
 N * factorial(N - 1).

4> stuff:factorial(-2).
** exception error: {factorialNonPositiveArgument,-2}
 in function stuff:factorial/1

There are three different functions we can use to raise an exception

Catching error

4

factorial(1) -> 1;
factorial(N) when N < 1 ->
 erlang:error({factorialNonPositiveArgument, N});
factorial(N) ->
 N * factorial(N - 1).

testThrow (N) ->
 try factorial(N) of
 Result -> {normal, Result}
 catch
 error:Exception -> {thrown,N, Exception}
 after
 io:format("Option like Java's finally")
 %no return values in after
 end.

Catching throw

5

testThrow (N) ->
 try factorial(N) of
 Result -> {normal, Result}
 catch
 throw:Exception -> {thrown,N, Exception}
 after
 io:format("Option like Java's finally\n")
 %no return values in after
 end.

factorial(1) -> 1;
factorial(N) when N < 1 ->
 throw({factorialNonPositiveArgument, N});
factorial(N) ->
 N * factorial(N - 1).

8> stuff:testThrow(-31).
Option like Java's finally
{thrown,-31,{factorialNonPositiveArgument,-31}}

6

Basic Concurrency

7

Primitives

Pid = spawn(Fun) create a process

Pid ! Message send a message to process with Pid

receive ... end receive a message

Used in Several Examples

8

-module(stuff).
-export([factorial/1,safeFactorial/1).

factorial(1) -> 1;
factorial(N) when N < 1 ->
 throw({factorialNonPositiveArgument, N});
factorial(N) ->
 N * factorial(N - 1).

safeFactorial(N) ->
 try factorial(N) of
 Result -> {ok,Result}
 catch
 throw:Exception -> Exception
 end.

Server

9

-module (factorialServer).
-export ([start/0]).
-import (stuff, [safeFactorial/1, factorial/1]).

start() -> spawn(fun loop/0).

loop () ->
 receive
 {ClientPid, factorial, N} ->
 ClientPid ! {self(), stuff:safeFactorial(N)},
 loop()
 end.

We are sending server Pid back to the client in the response. We do not need to do this, but it allows the client to filter messages
based on the server Pid. It also makes it harder for someone to spoof the server.

Client

10

-module (factorialClient).
-export ([factorialRpc/2]).

factorialRpc (ServerPid, N) ->
 ServerPid ! {self(), factorial, N},
 receive
 {ServerPid, Response} ->
 Response
 end.

1> Pid = factorialServer:start().
<0.33.0>
2> factorialClient:factorialRpc(Pid,4).
{ok,24}
3> factorialClient:factorialRpc(Pid, -4).
{factorialNonPositiveArgument,-4}

Of course one has to compile all the code first. The code "factorialServer:start()." creates a new process in the same VM that is
running the Erlang shell. The book would say that the server and client are running on the same node.

Hiding the Pid

11

-module (factorialServerNoPidNeeded).
-export ([start/0, rpc/1]).
-import (stuff, [safeFactorial/1, factorial/1]).

start() -> register(fac, spawn(fun() -> loop() end)).

rpc (N) ->
 fac ! {self(), factorial, N},
 receive
 {fac, Response} -> Response
 end.

loop () ->
 receive
 {ClientPid, factorial, N} ->
 ClientPid ! {fac, stuff:safeFactorial(N)},
 loop()
 end.

Here I am using the convention from the book of putting client and server code in one file. The register function associates the
atom "fac" with the server pid.

Issues

12

Server Exceptions
Message Mailbox
Timeouts
Remote Machines/Nodes

Server With Exceptions

13

-module (factorialServer).
-export ([start/0]).
-import (stuff, [safeFactorial/1, factorial/1]).

start() -> spawn(fun loop/0).

loop () ->
 receive
 {ClientPid, factorial, N} ->
 ClientPid ! {self(), stuff:factorial(N)},
 loop()
 end.

When N is negative we will get a throw that the server does not catch.

Uncaught Server Side Throw

14

1> Pid = factorialServer:start().
<0.33.0>
2> factorialClient:factorialRpc(Pid, 4).
24
3> factorialClient:factorialRpc(Pid, -4).

=ERROR REPORT==== 8-Sep-2008::13:12:01 ===
Error in process <0.33.0> with exit value: {{nocatch,
{factorialNonPositiveArgument,-4}},[{stuff,factorial,1}]}

The erlang shell no longer responds. We will see more about this later.

Message Mailbox

15

1> Pid = factorialServer:start().
<0.33.0>
2> factorialClient:factorialRpc(Pid, 5).
{ok,120}
3> Pid ! {foo, 5}.
{foo,5}
4> Pid ! {bar}.
{bar}
5> factorialClient:factorialRpc(Pid, 6).
{ok,720}

What happens to those messages?

Some Message Details

16

FactorialServer

MailBox

SaveQueue

Incoming messages
Added to mailbox

receive
Wait until message arrives
Repeat until find match

Inspect first message
If match

remove and process
Copy SaveQueue back

else move to SaveQueue

Timeouts

17

receive
Pattern1 [when Guard1] -> Expression1;
Pattern2 [when Guard2] -> Expression2;
...
PatternN [when GuardN] -> ExpressionN

after
TimeAmount -> ExpessionTimeout

end

Timeout Example

18

-module (factorialClient).
-export ([factorialRpc/1]).

factorialRpc (N) ->
 fac ! {self(), factorial, N},
 receive
 {fac, Response} ->
 Response
 after 1000 ->
 io:format("time out\n")
 end.

Timer

19

-module (bookTimer).
-export ([start/2,cancel/0]).

start (Time,Fun) ->
 register(timer, spawn(fun() -> timer(Time, Fun) end)).

cancel() -> timer ! cancel.

timer (Time, Fun) ->
 receive
 cancel ->
 void
 after Time ->
 Fun(),
 timer(Time, Fun)
 end.

Modified version of the timer code from the text.

Urgent Messages

20

priority_receive() ->
receive

{urgent, Message} ->
handle the message here,
priority_receive()

after 0 ->
receive

Any ->
handle messge here,
priority_receive()

end
end.

This allows the sender to send an urgent (or out-of-bounds) message that will be read before regular messages that have been
sent earlier but are still pending.

Message Details with Timeout

21

FactorialServer

MailBox

SaveQueue

Incoming messages
Added to mailbox

receive
Wait until message arrives
Repeat until find match

Inspect first message
If match

remove and process
move SaveQueue back in Mailbox

else move to SaveQueue

"after" section is only done after
checking all messages in the Mailbox

If timeout occurs while waiting for a message
evaluate the after code and move SaveQueue
back in Mailbox

One Machine, Two Nodes

22

Al pro 42->erl -sname localServer
Erlang (BEAM) emulator version 5.6.3 [source] [smp:2] [async-threads:0] [kernel-poll:false]

Eshell V5.6.3 (abort with ^G)
(localServer@AlPro)1> factorialServer:start().
true
(localServer@AlPro)2>

Al pro 19->erl -sname clientTest
Erlang (BEAM) emulator version 5.6.3 [source] [smp:2] [async-threads:0] [kernel-poll:false]

Eshell V5.6.3 (abort with ^G)
(clientTest@AlPro)1> rpc:call(localServer@AlPro, factorialClient, factorialRpc,[8]).
{ok,40320}
(clientTest@AlPro)2>

Terminal Two

Terminal One

sname stands for short name. Here we start up two different VMs on the same machine, one for the server and one for the
client. We need to use rpc:call in the client to send a message to the server process in the other VM.

Using Two Machines

23

Al pro 43->erl -name server -setcookie test
Erlang (BEAM) emulator version 5.6.3 [source] [smp:2] [async-threads:0] [kernel-poll:false]

Eshell V5.6.3 (abort with ^G)
(server@AlPro.sd.cox.net)1> factorialServer:start().
true

Air 15->erl -name client -setcookie test
Erlang (BEAM) emulator version 5.6.3 [source] [smp:2] [async-threads:0] [kernel-poll:false]

Eshell V5.6.3 (abort with ^G)
(client@Air.sd.cox.net)1> rpc:call(server@AlPro.sd.cox.net, factorialClient,factorialRpc,[10]).
{ok,3628800}
(client@Air.sd.cox.net)2>

Machine 1

Machine 2

Code has to be same version on both machines. Machines need to allow incoming connections (port 4369 and others). Server
needs to be DNS resolvable.(If on same LAN can use -sname without DNS.) Each machine needs same cookie. If not on the same
LAN make sure firewalls permit connections. Need more security setup than this if not on same LAN. This example needs more
work before we use it to deploy an Erlang program.

