
September 19, 2000 Doc 9, Threads part 2 slide # 1

CS 580 Client-Server Programming
Fall Semester, 2000
Doc 9 Threads part 2

Contents
References..1
Ending Thread Execution...2

Suspend, Resume, Stop, destroy...2
Forcing a Thread to Quit - Using interrupt()..3

Safety - Mutual Access..9
Synchronize...11
Volatile...19

wait and notify Methods in Object...22
wait - How to use...23
notify - How to Use...24

Piped Streams & Threads..31
Some Thread Ideas...34

Passing Data..34
Multiple Versions of Data Structures...39
Background Operations...42

References

Cancellable Activities, Doug Lea, October 1998, http://gee.cs.oswego.edu/dl/cpj/cancel.html

Concurrent Programming in Java: Design Principles and Patterns, Doug Lea, Addison-
Wesley, 1997

The Java Programming Language, 2nd Ed. Arnold & Gosling, Addison-Wesley, 1998

The Java Language Specification, Gosling, Joy, Steele, Addison-Wesley, 1996, Chapter 17
Threads and Locks.

Java's Atomic Assignment, Art Jolin, Java Report, August 1998, pp 27-36.

Java 1.2 on-line documentation http://java.sun.com/products/jdk/1.2/docs/index.html

Java 1.2 Thread Docs http://java.sun.com/products/jdk/1.2/docs/tooldocs/solaris/threads.html

Java Network Programming 2nd Ed., Harold, O'Reilly, Chapter 5

Copyright ©, All rights reserved.
2000 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on
this document.

September 19, 2000 Doc 9, Threads part 2 slide # 2

 Ending Thread Execution

A thread ends when its run method ends. At times program needs to permanently stop
a running thread. For example, when a user uses a browser to access a web page. The
browser will open a new network connection in a separate thread. If the user then
cancels the request, the browser may need to "kill" the thread doing the down load.

Suspend, Resume, Stop, destroy
Java has some thread methods that will stop threads. However, these methods are not
safe! They could leave your program in an inconsistent state or cause deadlock.
Suspend, resume and stop do exist, but are not safe. They are deprecated in JDK 1.2.
Destroy, while listed in the on-line API, was never implemented. It throws a
NoSuchMethodError() in JDK 1.2.

These methods are deprecated in JDK 1.2 because they are
not thread safe

What replaces Stop?
It turns out that there is no safe way to implement a method that will stop a thread in
general. Doug Lea recommends a multiphase approach. First, use interrupt. If that fails,
try starving the thread. If that also fails, giving the thread the minimum priority to reduce
its impact. If these all fail and the situation calls for drastic action, then one can use
stop(), perform clean up operations, then exit the program.

September 19, 2000 Doc 9, Threads part 2 slide # 3

Forcing a Thread to Quit - Using interrupt()
A thread can perform a block of operations then check to see if it is interrupted. If it has
been interrupted, then it can take "proper" action. Sometimes proper action is to clean
up, then quit. Sometimes proper action may be to "reset itself" to be available to run
again later. In the example below the sleep() method is throwing the
InterruptedException.

class NiceThread extends Thread {
public void run() {

while (!isInterrupted()) {
System.out.println("From: " + getName());

}

System.out.println("Clean up operations");
}

}

public class Test {
public static void main(String args[]) throws InterruptedException{

NiceThread missManners = new NiceThread();
missManners.setPriority(2);
missManners.start();
Thread.currentThread().sleep(5); // Let other thread run
missManners.interrupt();

}
}

Output
From: Thread-3
From: Thread-3
From: Thread-3
From: Thread-3
From: Thread-3
Clean up operations

September 19, 2000 Doc 9, Threads part 2 slide # 4

Interrupt Methods in java.lang.Thread

void interrupt()
Sent to a thread to interrupt it

boolean isInterrupted()
Sent to a thread to see if it has been sent the interrupt()
method

Returns true if the thread has been sent the interrupt()
method

static boolean interrupted()
Sent to the current thread to see if it has been sent the
interrupt() method

Returns true if the thread has been sent the interrupt()
method

Clears the interrupt flag in the current thread

September 19, 2000 Doc 9, Threads part 2 slide # 5

Using Thread.interrupted

This example uses the test Thread.interrupted() to allow the thread to be continue
execution later. Note that thread uses suspend() after it has made sure that all data is
safe. This is harder to do in real life than the simple example here indicates. Using wait
would be better here, but we have not covered wait() yet.

class RepeatableNiceThread extends Thread {
public void run() {

while (true) {
while (!Thread.interrupted())

System.out.println("From: " + getName());

System.out.println("Clean up operations");
suspend();

}
}

}

public class Test {
public static void main(String args[]) throws InterruptedException{

RepeatableNiceThread missManners =
new RepeatableNiceThread();

missManners.setPriority(2);
missManners.start();

Thread.currentThread().sleep(5);
missManners.interrupt();

missManners.resume();
Thread.currentThread().sleep(5);
missManners.interrupt();

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 6

Interrupt and sleep, join & wait

Let thread A be in the not runnable state due to being sent either the sleep(), join() or
wait() methods. Then if thread A is sent the interrupt() method, it is moved to the
runnable state and InterruptedException is raised in thread A.

In the example below, NiceThread puts itself to sleep. While asleep it is sent the
interrupt() method. The code then executes the catch block.

class NiceThread extends Thread {
public void run() {

try {
while (!isInterrupted()) {

System.out.println("From: " + getName());
sleep(5000);

}
System.out.println("Clean up operations");

} catch (InterruptedException interrupted) {
System.out.println("In catch");

}
}

}

public class Test {
public static void main(String args[]) {

NiceThread missManners = new NiceThread();
missManners.setPriority(6);
missManners.start();
missManners.interrupt();

}
}

Output
From: Thread-1
In catch

September 19, 2000 Doc 9, Threads part 2 slide # 7

Who Sends sleep() is Important

Since main sends the sleep method, not the thread itself, the InterruptedException is
not thrown.

public class Test {
public static void main(String args[]) {

try {
NiceThread missManners = new NiceThread();
missManners.setPriority(1);
missManners.start();
missManners.sleep(5000);
missManners.interrupt();

} catch (InterruptedException interrupted) {
System.out.println("Caught napping");

}
}

}

class NiceThread extends Thread {
public void run() {

try {
while (!isInterrupted()) {

System.out.println("From: " + getName());
}
System.out.println("Clean up operations");

} catch (Exception interrupted) {
System.out.println("In catch");

}
}

}
Output

From: Thread-1
From: Thread-1
From: Thread-1
From: Thread-1
Clean up operations

September 19, 2000 Doc 9, Threads part 2 slide # 8

IO Blocks

A read() on an inputstream or reader blocks. Once a thread calls read() it will not respond to
interrupt() (or much else) until the read is completed. This is a problem when a read could
take a long time: reading from a socket or the keyboard. If the input is not forth coming, the
read() could block forever.

Nonblocking IO on Sockets

Set the SoTimeout on the socket before reading

Then the read will time out and exit with
java.io.InterruptedIOException

InputStream is still usable

September 19, 2000 Doc 9, Threads part 2 slide # 9

Safety - Mutual Access

With multiprocessing we need to address mutual access by different threads. When two
or more threads simultaneously access the same data there may be problems.

Some types of access are safe. If a method accesses just local data, then multiple
threads can safely call the method on the same object. Assignment statements of all
types, except long and double, are atomic. That is a thread can not be interrupted by
another thread while performing an atomic operation.

class AccessExample {
int[] data;
int safeInt;

public String toString() {
return "array length " + data.length + " array values " + data[0];

}

public void safeCode(int size, int startValue){
int[] verySafe = new int[size];

for (int index = 0; index < size; index++)
verySafe[index] = (int) Math.sin(index * startValue);

}

public void setInt(int aValue) {
safeInt = aValue;

}

public void dangerousCode(int size, int startValue) {
data = new int[size];
for (int index = 0; index < size; index++)

data[index] = (int) Math.sin(index * startValue);
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 10

Mutual Access Problem

class Trouble extends Thread {
int size;
int startValue;
AccessExample data;

public Trouble(int aSize, int aStartValue, AccessExample myData) {
size = aSize;
startValue = aStartValue;
data = myData;

}

public void run() {
for (int k = 0; k < 10; k++) {

data.setInt(size);
data.safeCode(size, startValue);
data.dangerousCode(size, startValue);

}
}

}
public class Test {

public static void main(String args[]) throws Exception {
AccessExample someData = new AccessExample();
Trouble one = new Trouble(500000, 0, someData);
Trouble two = new Trouble(3, 22, someData);
one.start();
two.start();
two.join();
one.join();
System.out.println(someData);
}

}
Output

rohan 31-> j2 -native Test
java.lang.ArrayIndexOutOfBoundsException: 3
 at AccessExample.dangerousCode(Compiled Code)
 at Trouble.run(Compiled Code)
array length 3 array values 0

September 19, 2000 Doc 9, Threads part 2 slide # 11

Synchronize

Synchronize is Java's mechanism to insure that only one thread at a time will access a
piece of code. We can synchronize methods and block's of code (synchronize
statements).

Synchronized Instance Methods
When a thread executes a synchronized instance method on an object, that object is
locked. The object is locked until the method ends. No other thread can execute any
synchronized instance method on that object until the lock is released. The thread that
has the lock can execute multiple synchronized methods on the same object. The
synchronization is on a per object bases. If you have two objects, then different threads
can simultaneously execute synchronized methods on different objects.
Unsynchronized methods can be executed on a locked object by any thread at any
time. The JVM insures that only one thread can obtain a lock on an object at a time.
class SynchronizeExample {

int[] data;

public String toString() {
return "array length " + data.length + " array values " + data[0];

}

public synchronized void initialize(int size, int startValue){
data = new int[size];
for (int index = 0; index < size; index++)

data[index] = (int) Math.sin(index * startValue);
}

public void unSafeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)

data[index] = (int) Math.sin(index * newValue);
}

public synchronized void safeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)

data[index] = (int) Math.sin(index * newValue);
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 12

Synchronized Static Methods

A synchronized static method creates a lock on the class, not the object. When one
thread has a lock on the class, no other thread can execute any synchronized static
method of that class. Other threads can execute synchronized instance methods on
objects of that class.

class SynchronizeStaticExample {
int[] data;
static int[] classData

public synchronized void initialize(int size, int startValue){
data = new int[size];
for (int index = 0; index < size; index++)

data[index] = (int) Math.sin(index * startValue);
}

public synchronized void initializeStatic(int size, int startValue){
classData = new int[size];
for (int index = 0; index < size; index++)

classData[index] = (int) Math.sin(index * startValue);
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 13

Synchronized Statements

A block of code can be synchronized. The basic syntax is:

synchronized (expr) {
statements

}

The expr must evaluate to an object. This will lock the object. The lock is released when
the thread finishes the block. Until the lock is released, no other thread can enter any
method or synchronized block that is locked by the given object.

A synchronized method is syntactic sugar for a synchronized
block.

class LockTest {
public synchronized void enter() {

System.out.println("In enter");
}

}

Is the same as:

class LockTest {
public void enter() {

synchronized (this) {
System.out.println("In enter");

}
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 14

Lock for Block and Method
This example shows that a lock on an object also locks all access to the object via
synchronized methods.
public class Test {

public static void main(String args[]) throws Exception {
LockTest aLock = new LockTest();
TryLock tester = new TryLock(aLock);
tester.start();

synchronized (aLock) {
System.out.println("In Block");
Thread.currentThread().sleep(5000);
System.out.println("End Block");

}
}

}

class TryLock extends Thread {
private LockTest myLock;

public TryLock(LockTest aLock) {
myLock = aLock;

}
public void run() {

System.out.println("Start run");
myLock.enter();
System.out.println("End run");

}
}

class LockTest {
public synchronized void enter() {

System.out.println("In enter");
}

}
Output

In Block
Start run
End Block
In enter
End run

September 19, 2000 Doc 9, Threads part 2 slide # 15

Deadlock
The following code creates a deadlock

class Friendly extends Thread {
private Friendly aFriend;

public Friendly(String name) { super(name); }

public void setFriend(Friendly myFriend)
{ aFriend = myFriend;}

public synchronized void hug() {
try {

System.out.println("I " + getName() + " am hugged ");
sleep(5);
aFriend.rehug();

} catch (InterruptedException notInThisExample){}
}

public synchronized void rehug() {
System.out.println("I " + getName() + " am rehugged ");

}

public void run() {aFriend.hug(); }
}

public class Test {
public static void main(String args[]) {

Friendly fred = new Friendly("Fred");
Friendly sam = new Friendly("Sam");
fred.setFriend(sam);
sam.setFriend(fred);
fred.start();
sam.start();
System.out.println("End");

}
}

Output
End
I Fred am hugged
I Sam am hugged

September 19, 2000 Doc 9, Threads part 2 slide # 16

Deadlock Avoided
Here we show how to avoid the deadlock of the previous slide.

class Friendly extends Thread {
private Friendly aFriend;
private Object lock;

public Friendly(String name, Object lock) {
super(name);
this.lock = lock;

}

public void setFriend(Friendly myFriend) {
aFriend = myFriend;

}

public synchronized void hug() {
try {

System.out.println("I " + getName() + " am hugged ");
sleep(5);
aFriend.rehug();

}
catch (InterruptedException notInThisExample) {}

}

public synchronized void rehug(){
System.out.println("I " + getName() + " am rehugged ");

}

public void run() {
synchronized (lock) {

aFriend.hug();
}

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 17

//Deadlock Avoided Continued

public class Test
{

public static void main(String args[]) //throws Exception
{
Object aLock = "Schalage";
Friendly fred = new Friendly("Fred", aLock);
Friendly sam = new Friendly("Sam", aLock);
fred.setFriend(sam);
sam.setFriend(fred);
fred.start();
sam.start();
System.out.println("End");
}

}

Output
End
I Sam am hugged
I Fred am rehugged
I Fred am hugged
I Sam am rehugged

September 19, 2000 Doc 9, Threads part 2 slide # 18

Synchronized and Inheritance
If you want a method in a subclass to be synchronized you must declare it to be
synchronized.

class Top
{
public void synchronized left()

{
// do stuff
}

public void synchronized right()
{
// do stuff
}

}

class Bottom extends Top
{
public void left()

{
// not synchronized
}

public void right()
{
// do stuff not synchronized
super.right(); // synchronized here
// do stuff not synchronized
}

September 19, 2000 Doc 9, Threads part 2 slide # 19

Volatile
Java allows threads that access shared variables to keep private working copies of the
variables. This improves the performance of multiple threaded programs. These working
copies are reconciled with the master copies in shared main memory when objects are
locked or unlocked. If you do not wish to use synchronized, Java has a second method
to make sure that threads are using the proper value of shared variables. If a field is
declared volatile, then a thread must reconcile its working copy of the field every time it
accesses the variable. Operations on the master copy of the variable are performed in
exactly the order that the thread requested. In the example on the next slide, a threads
copy of the field "value" can get out of synch with its actual value.

September 19, 2000 Doc 9, Threads part 2 slide # 20

Volatile Example
class ExampleFromTheBook {

int value;
volatile int volatileValue;

public void setValue(int newValue) {
value = newValue;
volatileValue = newValue;

}

public void display() {
value = 5;
volatileValue = 5;

for (int k = 0; k < 5; k++) {
System.out.println("Value " + value);
System.out.println("Volatile " + volatileValue);
Thread.yield();

}
}

}
class ChangeValue extends Thread {

ExampleFromTheBook myData;

public ChangeValue(ExampleFromTheBook data) {
myData = data;

}

public void run() {
for (int k = 0; k < 5; k++) {

myData.value = k;
myData.volatileValue = k;
Thread.yield();

}
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 21

public class Test {
public static void main(String args[]) {

ExampleFromTheBook example = new ExampleFromTheBook();
ChangeValue changer = new ChangeValue(example);
changer.start();

example.display();
}

}
Some of the Output

Value 5
Volatile 1
Value 2
Volatile 2
Value 3
Volatile 3

September 19, 2000 Doc 9, Threads part 2 slide # 22

wait and notify Methods in Object
wait and notify are some of the most useful thread operations.

public final void wait(timeout) throws InterruptedException

Causes a thread to wait until it is notified or the specified
timeout expires.

Parameters:
timeout - the maximum time to wait in milliseconds

Throws: IllegalMonitorStateException
If the current thread is not the owner of the Object's
monitor.

Throws: InterruptedException
Another thread has interrupted this thread.

public final void wait(timeout, nanos) throws InterruptedException
public final void wait() throws InterruptedException

public final void notify()
public final void notifyAll()

Notifies all of the threads waiting for a condition to change.
Threads that are waiting are generally waiting for another
thread to change some condition. Thus, the thread
effecting a change that more than one thread is waiting for
notifies all the waiting threads using the method notifyAll().
Threads that want to wait for a condition to change before
proceeding can call wait(). The method notifyAll() can only
be called from within a synchronized method.

September 19, 2000 Doc 9, Threads part 2 slide # 23

wait - How to use

The thread waiting for a condition should look like:

synchronized void waitingMethod()
{
while (! condition)

wait();

Now do what you need to do when condition is true
}

Note

Everything is executed in a synchronized method

The test condition is in loop not in an if statement

The wait suspends the thread it atomically releases the lock on
the object

September 19, 2000 Doc 9, Threads part 2 slide # 24

notify - How to Use

synchronized void changeMethod()
{
Change some value used in a condition test

notify();
}

September 19, 2000 Doc 9, Threads part 2 slide # 25

 wait and notify Example
Over the next five slides is a typical consumer-producer example. Producers "make"
items, which they put into a queue. Consumers remove items from the queue. What
happens when the consumer wishes to remove when the queue is empty? Using
threads, we can have the consumer thread wait until a producer thread adds items to
the queue.
import java.util.Vector;

class Queue {
Vector elements = new Vector();
public synchronized void append(Object item) {

elements.add(item);
notify();

}

public synchronized Object get() {
try {

while (elements.isEmpty())
wait();

}
catch (InterruptedException threadIsDone) {

return null;
}

return elements.remove(0);
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 26

wait and notify - Producer

class Producer extends Thread
{
Queue factory;
int workSpeed;

public Producer(String name, Queue output, int speed)
{
setName(name);
factory = output;
workSpeed = speed;
}

public void run()
{
try

{
int product = 0;
while (true) // work forever

{
System.out.println(getName() + " produced " + product);
factory.append(getName() + String.valueOf(product));
product++;
sleep(workSpeed);
}

}
catch (InterruptedException WorkedToDeath)

{
return;
}

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 27

wait and notify - Consumer

class Consumer extends Thread
{
Queue localMall;
int sleepDuration;

public Consumer(String name, Queue input, int speed)
{
setName(name);
localMall = input;
sleepDuration = speed;
}

public void run()
{
try

{
while (true) // Shop until you drop

{
System.out.println(getName() + " got " +

localMall.get());
sleep(sleepDuration);
}

}
catch (InterruptedException endOfCreditCard)

{
return;
}

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 28

wait and notify - Driver Program

class Test
{
public static void main(String args[]) throws Exception

{
Queue wallmart = new Queue();
Producer nike = new Producer("Nike", wallmart, 500);
Producer honda = new Producer("Honda", wallmart, 1200);
Consumer valleyGirl = new Consumer("Sue", wallmart, 400);
Consumer valleyBoy = new Consumer("Bob", wallmart, 900);
Consumer dink = new Consumer("Sam", wallmart, 2200);
nike.start();
honda.start();
valleyGirl.start();
valleyBoy.start();
dink.start();
}

}
Output

Nike produced 0 Sue got Nike3 Honda produced 3
Honda produced 0 Nike produced 4 Bob got Honda3
Sue got Nike0 Sue got Nike4 Nike produced 8
Bob got Honda0 Honda produced Sue got Nike8
Nike produced 1 Bob got Honda2 Nike produced 9
Sam got Nike1 Nike produced 5 Sue got Nike9
Nike produced 2 Sue got Nike5 Honda produced 4
Sue got Nike2 Nike produced 6 Bob got Honda4
Honda produced 1 Sam got Nike6 Nike produced 10
Bob got Honda1 Nike produced 7 Sue got Nike10
Nike produced 3 Sue got Nike7 Nike produced 11

September 19, 2000 Doc 9, Threads part 2 slide # 29

Thread Pools

Threads are expensive to start, so a server may keep a set of threads waiting for work to
do. However, keeping a thread around does have some expense. Also, don't forget that
once a thread's run method is done, the thread is dead.

import java.util.List;
public class SquareThreads extends Thread {

List pool;

public SquareThreads(List taskPool) {
pool = taskPool;

}

public void run() {
Integer toSquare;
while (true) {

synchronized (pool) {
while (pool.isEmpty())

try {
pool.wait();

}
catch (java.lang.InterruptedException error) {

return; // no clean up to do
}

toSquare = (Integer) pool.remove(pool.size() - 1);
}
System.out.println("Thread " + getName() + " result is: " +

(toSquare.intValue() * toSquare.intValue()));
}

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 30

Running the Example
import java.util.Vector;

public class PoolExample {

public static void main(String args[]) {
Vector pool = new Vector();
SquareThreads[] threads = new SquareThreads[3];
for (int k = 0; k < threads.length;k++)

{
threads[k] = new SquareThreads(pool);
threads[k].start();
}

for (int k = 0; k < 10; k++)
{
synchronized (pool)

{
pool.add(new Integer(k));
pool.notifyAll();
}

}
}

}
Output

Thread Thread-1 result is: 64
Thread Thread-1 result is: 36
Thread Thread-2 result is: 49
Thread Thread-0 result is: 81
Thread Thread-1 result is: 25
Thread Thread-2 result is: 16
Thread Thread-0 result is: 9
Thread Thread-1 result is: 4
Thread Thread-2 result is: 1
Thread Thread-0 result is: 0

September 19, 2000 Doc 9, Threads part 2 slide # 31

Piped Streams & Threads

In most streams, one end of the stream is "connected" to a file, socket, keyboard, etc.
With piped streams, both ends are in your program. This allows one thread to write data
via a stream to another thread in your program. The following example illustrates this.

outPipecout

PrintWriter

PipeWriter

cininPipe

PipedReader

UnicodeReader

main ReadThread

class TestIO {
public static void main(String[] args) throws IOException {

PipedReader inPipe = new PipedReader();
PipedWriter outPipe = new PipedWriter(inPipe);

PrintWriter cout = new PrintWriter(outPipe);

ReadThread reader = new ReadThread("Read", inPipe);
reader.setPriority(6); // 5 is normal priority
reader.start();

System.out.println("In Main");
cout.println("Hello");
System.out.println("End");

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 32

Messages between Threads

import java.io.*;
import sdsu.io.UnicodeReader;

class ReadThread extends Thread {
private UnicodeReader cin;

public ReadThread(String name, PipedReader input) {
super(name);
cin = new UnicodeReader(input);

}

public void run() {
try {

System.out.println("Start " + getName());
String message = cin.readWord();
System.out.println(message + " From: " + getName());

} catch (Exception ignored) {}
}

}
Output

Start Read
In Main
End
Hello From: Read

September 19, 2000 Doc 9, Threads part 2 slide # 33

Debugging Threads

Some useful methods in Thread for debugging

public static void dumpStack()

Prints a stack trace for the current thread on System.out

public String toString()

Returns a String representation of the Thread, including the
thread's name, priority and thread group.

public int countStackFrames()

Returns the number of stack frames in this Thread. The
Thread must be suspended when this method is called.

September 19, 2000 Doc 9, Threads part 2 slide # 34

Some Thread Ideas
Passing Data

When we pass data in or out of a method, there are problems with the data being
changed by another thread while the method is using the data.

public int[] arrayPartialSums(int[] input) {
for (int k = 1; k < input.length; k ++)

input[k] = input[k - 1] + input[k];
return input;

}

In the method below, even if all the methods of Foo are synchronized another thread can
change the state of aFoo while objectMethod is executing.

public Object objectMethod(Foo aFoo) {
aFoo.bar();
aFoo.process();
return aFoo().getResult();

}

Lock the Data
If all users of aFoo follow the convention of locking the object before using it, then a Foo
will not change in objectMethod due to activities in other threads.

public Object objectMethod(Foo aFoo) {
synchronized (aFoo) {

aFoo.bar();
aFoo.process();
return aFoo().getResult();

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 35

Clone the Data in the Method

Creating a clone helps insure that the local copy will not be modified by other threads.
Of course, you need to perform a deep copy to insure no state is modified by other
threads.

public int[] arrayPartialSums(int[] input) {
int[] inputClone;
synchronized (input) {

inputClone = input.clone();
}

for (int k = 1; k < input.length; k ++)
inputClone [k] = inputClone [k - 1] + inputClone [k];

return inputClone;
}

Pass in a Clone

public void callerMethod() {
// blah

aWidget.arrayPartialSums(intArray.clone())
}

Passer nulls its Reference

If the calling method removes its copy of parameters, then there should only be one
copy of the parameter.

public void callerMethod() {
// blah

aWidget.arrayPartialSums(intArray)
intArray = null;

}

September 19, 2000 Doc 9, Threads part 2 slide # 36

Returner nulls its Reference

If a method nulls out its copy of values it returns or returns a clone, it will reduce the
problem of two threads accessing the same reference.

public Foo aMethod() {
Foo localVarCopy = theRealFooReference;
theRealFooReference = null;
return localVarCopy;

}

public Foo aMethod() {
return theRealFooReference.clone();

}

Immutable Objects

Designing classes so the state of the object can not be modified eliminates the problem
of multiple threads modifying objects state. String is an example of this.

A weaker idea is to create read-only copies of existing objects. An even weaker idea is
to create read-only wrappers for existing objects. The later can be strengthened by
using in with the clone method. The following two slides illustrate read-only objects.

September 19, 2000 Doc 9, Threads part 2 slide # 37

Read-Only Copies - Inheritance Version

public class Point {
int x;
int y;

public Point(int x , int y) {
this.x = x;
this.y = y;

}

public int y() { return y; }

public void y(int newY) { y = newY; }

public int x() { return x; }

public void x(int newX) { x = newX; }
}

public class ReadOnlyPoint extends Point {
public ReadOnlyPoint(int x, int y) {

super(x, y);
}

public ReadOnlyPoint(Point aPoint) {
super(aPoint.x(), aPoint.y());

}

public void y(int newY) {
throw new UnsupportedOperationException() ;

}

public void x(int newX) {
throw new UnsupportedOperationException() ;

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 38

Read-Only Wrappers - Composition Version

interface Point {
public int y();
public void y(int newY);
public int x();
public void x(int newX);

}

public class ReadWritePoint implements Point {
int x;
int y;

public ReadWritePoint(int x , int y) {
this.x = x;
this.y = y;

}

public int y() { return y; }
public void y(int newY) { y = newY; }
public int x() { return x; }
public void x(int newX) { x = newX; }

}

public class ReadOnlyWrapperPoint implements Point {
Point myData;

public ReadOnlyWrapperPoint(Point aPoint) {myData = aPoint; }

public int y() { return myData.y(); }
public int x() { return myData.x(); }
public void y(int newY) {

throw new UnsupportedOperationException() ;
}
public void x(int newX) {

throw new UnsupportedOperationException() ;
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 39

 Multiple Versions of Data Structures
We may needs different versions of a data structure that works differently if it is uses
sequentially or with threads. On this slide, we have a Stack that is not synchronized for
use in sequential programming. Composition is used over inheritance. Since we may
need a LinkedListStack class, composition will allow the SynchronizedStack and the
WaitingStack to work with LinkedListStack objects.

interface Stack {
public void push(float item);
public float pop();
public boolean isEmpty();
public boolean isFull();

}

public class ArrayStack implements Stack {

private float[] elements;
private int topOfStack = -1;

public ArrayStack(int stackSize) {
elements = new float[stackSize];

}

public void push(float item) {
elements[++topOfStack] = item;

}

public float pop() {
return elements[topOfStack--];

}

public boolean isEmpty() {
if (topOfStack < 0) return true;
else return false;

}

public boolean isFull() {
if (topOfStack >= elements.length) return true;
else return false;

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 40

The Synchronized Stack

This example provides straightforward synchronization for a Stack object.

public class SynchonizedStack implements Stack {
Stack myStack;

public SynchonizedStack() {
this(new ArrayStack());

}

public SynchonizedStack(Stack aStack) {
myStack = aStack;

}

public synchonized boolean isEmpty() {
return myStack.IsEmpty();

}

public synchonized boolean isFull() {
return myStack.isFull();

}

public synchonized void push(float item) {
myStack.push(item);

}

public synchonized float pop() {
return myStack.pop();

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 41

WaitingStack
In sequential programming there is not much that can be done when you attempt to
pop() an element off an empty stack. In concurrent programming, we can have the
thread that requested the pop() wait until another thread pushes an element on the
stack. The stack below does this.

public class WaitingStack implements Stack {
Stack myStack;

public WaitingStack(Stack aStack) {
myStack = aStack;

}

public synchonized boolean isEmpty() {
return myStack.IsEmpty();

}

public synchonized boolean isFull() {
return myStack.isFull();

}

public synchonized void push(float item) {
myStack.push(item);
notifyAll();

}

public synchonized float pop() {
while (isEmpty())

try {
wait();

} catch (InterruptedException ignore) {}
return myStack.pop();

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 42

Background Operations

There are times when we would like to perform operations in the "background". When
these operations are done then another thread will use the result of the computations.
How do we know when the background thread is done? The polling done here does
consume CPU cycles. We could end up with one thread wasting CPU time just
checking if another thread is done.

class TimeConsumingOperation extends Thread {
Object result;
boolean isDone = false;

public void run() {
DownLoadSomeData&PerformSomeComplexStuff;
result = resultOfMyWork;
isDone = true;

}

public Object getResult() {
return result;

}

public boolean isDone() {
return isDone();

}
}

public class Poll {
public static void main(String args[]) {

TimeConsumingOperation background =
new TimeConsumingOperation();

background.start();

while (!background.isDone()) {
performSomethingElse;

}

Object neededInfo = background.getResult();
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 43

Futures
One way to handle these "background" operations is to wrap them in a sequential
appearing class: a future. When you create the future object, it starts the computation in
a thread. When you need the result, you ask for it. If it is not ready yet, you wait until it
is ready.

class FutureWrapper {
TimeConsumingOperation myOperation;

public FutureWrapper() {
myOperation = new TimeConsumingOperation();
myOperation.start();

}

public Object compute() {
try {

myOperation.join();
return myOperation.getResult();

} catch (InterruptedException trouble) {
DoWhatIsCorrectForYourApplication;

}
}

}

public class FutureExample {
public static void main(String args[]) {

FutureWrapper myWorker = new FutureWrapper();

DoSomeStuff;
DoMoreStuff;

x = myWorker.compute();
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 44

Callbacks
The thread doing the computation can use callbacks to notify other objects that it is
done.
class MasterThread {

public void normalCallback(Object result) {
processResult;

}

public void exceptionCallback(Exception problem) {
handleException;

}

public void someMethod() {
compute;
TimeConsumingOperation backGround =

new TimeConsumingOperation(this);

backGround.start();
moreComputation;

}
}

class TimeConsumingOperation extends Thread {
MasterThread master;

public TimeConsumingOperation(MasterThread aMaster) {
master = aMaster;

}

public void run() {
try {

DownLoadSomeData;
PerformSomeComplexStuff;
master.normalCallback(resultOfMyWork);

} catch (Exception someProblem) {
master.exceptionCallback(someProblem);

}
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 45

Callbacks with Listeners
The following code uses Java's standard idea of listeners to generalize the callback
process. Anyone that is interested in the results of the thread implements the
ThreadListener interface and registers their interest (shown later). The results are
passed back in a ThreadEvent object.

public interface ThreadListener {
public void threadResult(ThreadEvent anEvent);
public void threadExceptionThrown(ThreadEvent anEvent);

}

public class ThreadEvent extends java.util.EventObject {
Exception thrown;
Object result;

public ThreadEvent(Object source) {
super(source);

}

public ThreadEvent(Object source, Object threadResult) {
super(source);
result = threadResult;

}

public ThreadEvent(Object source, Exception threadException) {
super(source);
thrown = threadException;

}

public Exception getException() {
return thrown;

}

public Object getResult() {
return result;

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 46

ThreadListenerHandler
ThreadListenerHandler is a helper class used to perform the actual broadcast.
public class ThreadListenerHandler {

ArrayList listeners = new ArrayList();
Object theListened;

public ThreadListenerHandler(Object listened) {
theListened = listened;

}

public synchronized void addThreadListener(ThreadListener aListener) {
listeners.add(aListener);

}

public synchronized void removeThreadListener(ThreadListener aListener) {
listeners.remove(aListener);

}

public void broadcastResult(Object result) {
Iterator sendList;
synchronized (this) {

sendList = ((ArrayList) listeners.clone()).iterator();
}

ThreadEvent broadcastData = new ThreadEvent(theListened, result);

while (sendList.hasNext()) {
ThreadListener aListener = (ThreadListener) sendList.next();
aListener.threadResult(broadcastData);

}
}

public void broadcastException(Exception anException) {
Iterator sendList;
synchronized (this) {

sendList = ((ArrayList) listeners.clone()).iterator();
}
ThreadEvent broadcastData = new ThreadEvent(theListened, anException);

while (sendList.hasNext()) {
ThreadListener aListener = (ThreadListener) sendList.next();
aListener.threadExceptionThrown(broadcastData);

}
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 47

TimeConsumingOperation
The methods addThreadListener and removeThreadListener are used by client code to
register interest in "listening" to this thread.

class TimeConsumingOperation extends Thread {

ThreadListenerHandler listeners =
new ThreadListenerHandler(this);

public void addThreadListener(ThreadListener aListener) {
listeners.addThreadListener(aListener);

}

public void removeThreadListener(ThreadListener aListener) {
listeners.removeThreadListener(aListener);

}

public void run() {
try {

DownLoadSomeData;
PerformSomeComplexStuff;
listeners.broadcastResult(null);

} catch (Exception someProblem) {
listeners.broadcastException(someProblem);

}
}

}

September 19, 2000 Doc 9, Threads part 2 slide # 48

MasterThread

Here we can see how the creator of TimeConsumingOperation works.

class MasterThread implements ThreadListener {

public void threadResult(ThreadEvent threadResult) {
// Get the results and use them to do perform the task
threadResult.getResult();

}

public void threadExceptionThrown(ThreadEvent problem) {
// The other thread ended in an exception, deal with that here
problem.getException();

}

public void someMethod() {
compute;
TimeConsumingOperation backGround =

new TimeConsumingOperation();

// Register interest in the background's results
backGround.addThreadListener(this);

backGround.start();
moreComputation;

}
}

September 19, 2000 Doc 9, Threads part 2 slide # 49

Using an Adapter

Sometimes you may not want your class to implement the ThreadListener interface.
Other method names and parameter types may be more appropriate for your context.
We can use an "adapter" class to adapt the methods in the MasterThread class to the
methods in the ThreadListener interface. This use of anonymous classes is a major
motivation for adding anonymous classes to Java.

class MasterThread {

public void compute(String data) {
UseStringToPerformComputation

}

public void handleException(Exception problem) {
HandleTheException

}

public void someMethod() {
TimeConsumingOperation backGround =

new TimeConsumingOperation();

backGround.addThreadListener(new ThreadListener() {
public void threadResult(ThreadEvent anEvent) {

compute((String) anEvent.getResult());
}
public void threadExceptionThrown(ThreadEvent anEvent) {

handleException(anEvent.getException());
}

}
);

backGround.start();
moreComputation;

}
}

