
August 26, 2000 Doc 1, Introduction slide # 1

CS 580 Client-Server Programming
Fall Semester, 2000
Doc 1 Introduction

Contents

References..1
Introduction to Course ...2
Computing "Paradigms" ..3

Centralized Multi-user Architecture..3
Distributed Single-User Architecture..5
Client/Server Architecture..7

Introduction to Client-Server ..9
What is Client-Server?..9
What Client-Server Requires of a Programmer...14

Programming Issues..15
Names..15
Comments..17

Kinds of Comments ...19
Commenting Efficiently..21
Commenting Techniques...22
Commenting Data Declarations...26
Commenting Routines...27

Object-Oriented Programming..28

References

Code Complete by Steve McConnell

Copyright ©, All rights reserved.
2000 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on
this document.

August 26, 2000 Doc 1, Introduction slide # 2

Introduction to Course
Items To Cover

• Prerequisites
• Grades
• Programs
• Homework
• Projects
• Class notes, www
• How lectures will work
• Why this course
• When will it be offered again?
• Crashers
• Machines, accounts, languages

August 26, 2000 Doc 1, Introduction slide # 3

Computing "Paradigms"

• Centralized Multi-user Architecture

• Distributed Single-User Architecture

• Client/Server Architecture

Centralized Multi-user Architecture

Central
ComputerAscii Terminals

Wide Area
Network

Application 1

Application 2

Application 3

Data

Large central computers serving many users

August 26, 2000 Doc 1, Introduction slide # 4

Motivating Factors

Service large number of users (200 to 10,000+)

Centralized storage for large data bases

Minimize data on slow networks

Strengths

Very stable, very reliable, well supported

Cost-effective why to support thousands of users

Large pool of technical staff

Large number of business applications available

Weakness

Proprietary hardware and software

Very expensive

Requires large support staff

Costly to incrementally add more capacity

Mind Set

Hierarchical organization (Bureaucratic heaven)

August 26, 2000 Doc 1, Introduction slide # 5

Distributed Single-User Architecture

Application 1 Application 2

Data

Data

Local Area Network

Motivating Factors

Low cost fast local area networks

Provide small number of users with compute power

Failure of MIS departments to be responsive and cost-
effective

August 26, 2000 Doc 1, Introduction slide # 6

Strengths

Cheap hardware and software

Lots of third-party software

User is in complete control of environment

Low cost to add more users

Weakness

Sharing of resources across many users is difficult

Networks and OS do not provide good control or
management over computer resources

Multivender environments can cause operation, support and
reliability problems

Mind set

Individualism (Lone Ranger syndrome)

August 26, 2000 Doc 1, Introduction slide # 7

Client/Server Architecture

Function A

Function B

Local Area Network

Function C

Function D

Function A

Client

Client

Function S

Data

Server

Application

Motivating Factors

Limitations of other modes of computing

Utilize easy to use micro computers as front end to
mainframe computers

August 26, 2000 Doc 1, Introduction slide # 8

Strengths

Cost-effective way to support thousands of users

Low cost to add more users

Cheap hardware and software

Provides control over access to data

User remains in control over local environment

Flexible access to information

Weaknesses

Reliability

Complexity

Lack of trained developers

August 26, 2000 Doc 1, Introduction slide # 9

Introduction to Client-Server
What is Client-Server?

User
Interface

Protocol
Interface

DataProtocol
Interface

Protocol

Client Server

Client

Application that initiates peer-to-peer communication

Translate user requests into requests for data from server
via protocol

GUI often used to interact with user

Server

Any program that waits for incoming communication
requests from a client

Extracts requested information from data and return to client

Common Issues

• Authentication
• Authorization
• Data Security
• Privacy
• Protection
• Concurrency

August 26, 2000 Doc 1, Introduction slide # 10

User
Interface

Protocol
Interface

DataProtocol
Interface

Protocol

Client Server

Example: World Wide Web (WWW)

Data

Server normally provides data to clients

Often utilizes some data base

WWW data is HyperText Markup Language (html) files

<!DOCTYPE HTML SYSTEM "html.dtd">
<HTML>
<HEAD><TITLE>
Client Server Programming
</TITLE></HEAD>
<BODY>
<H2>Client Server Programming</H2>
<HR>

August 26, 2000 Doc 1, Introduction slide # 11

Protocol

How the client and server interact

Glue that makes client-server work

Involves using low level network protocols and application
specific protocols

Designing application specific protocols is very important

WWW uses the HyperText Transfer Protocol

Request = SimpleRequest | FullRequest

SimpleRequest = GET <uri> CrLf

FullRequest = Method URI ProtocolVersion CrLf
[*<HTRQ Header>]
[<CrLf> <data>]

<Method> = <InitialAlpha>

ProtocolVersion = HTTP/1.0

uri = <as defined in URL spec>

<HTRQ Header> = <Fieldname> : <Value> <CrLf>

<data> = MIME-conforming-message

August 26, 2000 Doc 1, Introduction slide # 12

Protocol Choices

• Text Based

Transmit ASCII or Unicode between machines

HTTP is common transport layer

XML becoming common

SOAP new XML standard

• Binary

Transmit objects between machines

Faster development time

RMI, Corba are examples

August 26, 2000 Doc 1, Introduction slide # 13

What this Course is not

An advanced (or beginning) Networking course

Application

Presentation

Session

Transport

Network

Data Link

Physical

7

6

5

4

3

2

1

OSI Model

Process
Layer

How to use a client builder application/system

Powerbuilder

What this Course covers

Skills & knowledge required to build client-server applications

August 26, 2000 Doc 1, Introduction slide # 14

What Client-Server Requires of a Programmer

• Designing robust protocols

• Network programming

• Designing usable computer-human interfaces

• Good documentation skills

• Good debugging skills

• Understand the information flow of the company/customer

• Mastery of concurrency

• Multi-platform development

• Database programming

• Security

August 26, 2000 Doc 1, Introduction slide # 15

Programming Issues
Names

"Finding good names is the hardest part of OO Programming"

"Names should fully and accurately describe the entity the
variable represents"

What role does the variable play in the program?

Data Structure Role, function
InputRec EmployeeData
BitFlag PrinterReady

Some Examples of Names, Good and Bad

TrainVelocity Velt, V, X, Train
CurrentDate CD, Current, C, X, Date
LinesPerPage LPP, Lines, L, X

August 26, 2000 Doc 1, Introduction slide # 16

OOP Names - Common Problems

class Stack
{
Vector theStack = new Vector();

public void push(object x)
{
theStack.add(x);
}

// code deleted
}

class DriverProgram
{
public void static main(String[] args)

{
// blah blah blah

Stack stack;

aFooFunction(stack);

// more blah
}

void aFooFunction(Stack aStack)
{
}

}

August 26, 2000 Doc 1, Introduction slide # 17

Comments

"Comments are easier to write poorly than well, and comments
can be more damaging than helpful"

What does this do?

for i := 1 to Num do
 MeetsCriteria[i] := True;
for i := 1 to Num / 2 do begin
 j := i + i;
 while (j <= Num) do begin
 MeetsCriteria[j] := False;
 j := j + i;
 end;
for i := 1 to Mun do
 if MeetsCriteria[i] then
 writeln(i, ' meets criteria ');

August 26, 2000 Doc 1, Introduction slide # 18

How many comments does this need?

for PrimeCandidate:= 1 to Num do
IsPrime[PrimeCandidate] := True;

for Factor:= 1 to Num / 2 do begin
FactorableNumber := Factor + Factor ;
while (FactorableNumber <= Num) do begin

IsPrime[FactorableNumber] := False;
FactorableNumber := FactorableNumber + Factor ;

end;
end;

for PrimeCandidate:= 1 to Num do
if IsPrime[PrimeCandidate] then

writeln(PrimeCandidate, ' is Prime ');

Good Programming Style is the Foundation of
Well Commented Program

August 26, 2000 Doc 1, Introduction slide # 19

Kinds of Comments

• Repeat of the code

X := X + 1 /* add one to X

/* if allocation flag is zero */

if (AllocFlag == 0) ...

• Explanation of code
Used to explain complicated or tricky code

*p++->*c = a

/* first we need to increase p by one, then ..

Make code simpler before commenting

(*(p++))->*c = a

ObjectPointerPointer++;
ObjectPointer = *ObjectPointerPointer;
ObjectPointer ->*DataMemberPointer = a;

August 26, 2000 Doc 1, Introduction slide # 20

• Marker in the code

/* **** Need to add error checking here **** */

• Summary of the code
Distills a few lines of code into one or two sentences

• Description of the code's intent

Explains the purpose of a section of code

{ get current employee information } intent

{ update EmpRec structure } what

August 26, 2000 Doc 1, Introduction slide # 21

Commenting Efficiently

• Use styles that are easy to maintain

/***********************************
 * module: Print *
 * *
 * author: Roger Whitney *
 * date: Sept. 10, 1995 *
 * *
 * blah blah blah *
 * *
 ***********************************/

/***********************************
 module: Print

 author: Roger Whitney
 date: Sept. 10, 1995

 blah blah blah

 ***********************************/

• Comment as you go along

August 26, 2000 Doc 1, Introduction slide # 22

Commenting Techniques
Commenting Individual Lines

Avoid self-indulgent comments

MOV AX, 723h ; R. I. P. L. V. B.

Endline comments have problems

MemToInit := MemoryAvailable(); { get memory available }

Not much room for comment

Must work to format the comment

Use endline comments on

Data declarations

Maintenance notes

Mark ends of blocks

August 26, 2000 Doc 1, Introduction slide # 23

Commenting Paragraphs of Code

Write comments at the level of the code's intent

Comment the why rather than the how

Make every comment count

Document surprises

Avoid abbreviations

How verses Why

How

/* if allocation flag is zero */

if (AllocFlag == 0) ...

Why

/* if allocating a new member */

if (AllocFlag == 0) ...

Even Better

/* if allocating a new member */

if (AllocFlag == NEW_MEMBER) ...

August 26, 2000 Doc 1, Introduction slide # 24

Summary comment on How

{ check each character in "InputStr" until a
 dollar sign is found or all characters have
 been checked }

Done := false;
MaxPos := Length(InputStr);
i := 1;
while ((not Done) and (i <= MaxLen)) begin

if (InputStr[i] = '$') then
Done := True

else
i := i + 1

end;

Summary comment on Intent

{ find the command-word terminator }

Done := false;
MaxPos := Length(InputStr);
i := 1;

while ((not Done) and (i <= MaxPos)) begin
if (InputStr[i] = '$') then

Done := True
else

i := i + 1
end;

August 26, 2000 Doc 1, Introduction slide # 25

Summary comment on Intent with Better Style

{ find the command-word terminator }

FoundTheEnd := false;
MaxCommandLength := Length(InputStr);
Index := 1;

while ((not FoundTheEnd) and
 (Index <= MaxCommandLength)) begin

if (InputStr[Index] = '$') then
FoundTheEnd := True;

else
Index := Index + 1;

end;

August 26, 2000 Doc 1, Introduction slide # 26

Commenting Data Declarations

Comment the units of numeric data

Comment the range of allowable numeric values

Comment coded meanings

var
CursorX: 1..MaxCols; { horizontal screen position of cursor }
CursorY: 1..MaxRows; { vertical position of cursor on screen }

AntennaLength: Real; { length of antenna in meters: >= 2 }
SignalStrength: Integer; { strength of signal in kilowatts: >= 1 }

CharCode: 0..255; { ASCII character code }
CharAttib: Integer; { 0=Plain; 1=Italic; 2=Bold }
CharSize: 4..127; { size of character in points }

Comment limitations on input data

Document flags to the bit level

August 26, 2000 Doc 1, Introduction slide # 27

Commenting Routines

Avoid Kitchen-Sink Routine Prologs

Keep comments close to the code they describe

Describe each routine in one or two sentences at the top of the
routine

Document input and output variables where they are declared

Differentiate between input and output data

Document interface assumptions

Keep track of the routine's change history

Comment on the routine's limitation

Document the routine's global effects

Document the source of algorithms that are used

procedure InsertionSort
{
VarData: SortArray; { sort array elements }

FirstElement: Integer {index of first element to sort}
LastElement: Integer {index of last element to sort}

}

August 26, 2000 Doc 1, Introduction slide # 28

Object-Oriented Programming
Conceptual Level Definition

Abstraction

“Extracting the essential details about an item or group of
items, while ignoring the unessential details.”

Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the common
pattern and provides a means for specifying which variation to
use.”

Richard Gabriel

Example

Pattern: Priority queue

Essential Details: length
items in queue
operations to add/remove/find item

Variation: link list vs. array implementation
stack, queue

August 26, 2000 Doc 1, Introduction slide # 29

Object-Oriented Programming
Conceptual Level Definition

Encapsulation

Enclosing all parts of an abstraction within a container

Example

Leaf Class

DryWeight

Environment

initialization

currentWeight

update Weight

photosynthesis

update

August 26, 2000 Doc 1, Introduction slide # 30

Object-Oriented Programming
Conceptual Level Definition

Information Hiding

Hiding parts of the abstraction

Example

DryWeightinitialization

currentWeight

update Weight

photosynthesis

update
Environment

Leaf

August 26, 2000 Doc 1, Introduction slide # 31

Object-Oriented Programming
Conceptual Level Definition

Hierarchy

Abstractions arranged in order of rank or level

Class Hierarchy

Leaf Class

DryWeightinitialization

currentWeight

update Weight

photosynthesis

update
Environment

Leaf (C4) Class

photosynthesis

Leaf (C3) Class

photosynthesisphotosynthesis

August 26, 2000 Doc 1, Introduction slide # 32

Object-Oriented Programming
Conceptual Level Definition

Hierarchy

Object Hierarchy

Leaf

Plant

Root

