
11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2000

Doc 16 Nested Classes & Exception Lectures Examples
Contents

Nested Classes & Exception Lecture Examples........................... 2
Scope 2 Example ... 3
Scope 2a Example ... 7
Scope 3 Example ... 9
Scope 4 Example ... 10
Scope 5 Example ... 11
Scope 6 Example ... 12
Scope 7 Example ... 13
Exception Example... 15
Exception 2 Example.. 16
Exception 3 Example.. 17

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 2

Nested Classes & Exception Lecture Examples

These are the examples that Dr. Eckberg used when he lectured
in CS 535 while I was out of town. For more examples using
Nested and Inner classes see:

http://www.eli.sdsu.edu/courses/fall98/cs596/notes/nested/nested
.html

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 3

Scope 2 Example

This example explores both static and non-static inner classes.
Like other class components, a static inner class is the property of
the class and not objects of that class. If the phrase 'class var.' is
correct for a static data member, than a static inner class must be
referred to as a 'class class' (hehehe). A non-static inner class
object can only be created thru an instance of the containing
class--it belongs to objects of the containing class. This applies
at run time to creation attempts from an outer class method. It
does not apply to creation of data members of the outer class at
'definition time'.

public class scope2 {
 static int j = 4, k = 9;
 int p = 14;

 //creates references
 staticInner sinn3, sinn4;
 inner motel = new inner();

 // creates reference only, presumably
 inner motel2;

 static inner motel3 = new inner(); // illegal,

 // Next two lines show
 // that a static instance of a member instance can be created.
 static scope2 sc1 = new scope2(); // legal
 static inner motel6 = sc1.new inner();

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 4

Scope 2 Example - Continued

 public static void main(String [] aa) {
 int i = 7;
 int k = 5;
 scope2 sc2 = new scope2();
 staticInner sinn = new staticInner(); // static inner class instance

 sinn.foop();

 // an outer class instance is needed to
 // invoke the inner class's 'new' method and constructor
 // An inner class cannot have a static member or method
 inner inn = sc2.new inner();
 inn.foo();
 sc2.print();
 motel6.foo();
 System.out.println("inner class k is " + inn.k + " block k is " + k);
 } //main

 public void print() {
 motel.foo();
 }

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 5

Scope 2 Example - Continued

 class inner {
 // outer class static var can be redefined
 int n = 10; int k = 8;
 public void foo() {
 // can access the outer static k with a classname modifer
 System.out.println("outer k is " + scope2.k);
 System.out.println("outer static j is " + j + "outer p is " + p);

 // the outer class can access an inner class method, and an inner
 // class can access an outer class "class variable", which is within
 // scope, with out a classname modifier; ditto for an outer class
 // instance variable! thus at 'run time' an 'enclosing' outer class
 // object must be available; This ability of an inner class to refer to
 // outer instance vars. forces each inner class object to be
 // assoc. with an outer class object, one way or another
 }
 } //inner

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 6

Scope 2 Example - Continued

 static class staticInner{
 int q = 15;
 int u = 22;
 void foop() {
 System.out.println(p); //this is illegal; cannot refer to instance
 //variable within a static class
 System.out.println(" inner static foop prints outer static j " + j);
 // static var.
 } //foop
 } //staticInner
}

A static inner class, if thought of as a 'record', makes sense in
that one can have multiple occurrences of that record as a 'part'
of the static components of the containing class, but getting
definitional 'copies' of the inner static class. The merit of being
able to get dynamic 'copies' is very unclear, and inconsistent with
the usual concept of 'static'. Does one get multiple copies????

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 7

Scope 2a Example
This example explores static inner classes. Like other class
components, a static inner class is the property of the class and
not objects of that class. If the phrase 'class var.' is correct for a
static data member, than a static inner class must be referred to
as a 'class class' (hehehe). Of course there really is a Class
class. :(

public class scope2a {
 static int j = 4,k = 9;
 int p = 14;
 staticInner sinn3,sinn4; //creates references
 static staticInner sinn5 = new staticInner();

 public static void main(String [] aa) {
 int i = 7;
 int k = 5;
 scope2a sc2 = new scope2a();
 staticInner sinn = new staticInner(); // static inner class instance
 // What does that mean?????
 sinn.foop();
 // sinn3 is not static, but main() is, so we need an instance of scope2a
 sc2.sinn3 = new staticInner();
 sc2.sinn3.foop();
 sinn5.foop(); //sinn5 is static data member, i.e. a 'class' member

 //sc2.print();
 }

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 8

Scope 2a Example Continued

 static class staticInner{
 int q = 15;
 int u = 22;
 void foop() {
 //System.out.println(p); //this is illegal; cannot refer to instance
 //variable within a static class
 System.out.println(" inner static foop prints outer static j " + j);
 // static var.
 }
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 9

Scope 3 Example

Explores inner class method syntax; inner clases have parents
too; examines how to reference parental stuff, shadowed or not.

class A {int a = 11;}
class B {int a = 12;}
public class scope3 extends A {
 int k = 33;
 int a = 55;
 public static void main(String [] aa) {
 scope3 sc3 = new scope3();
 inner in = sc3.new inner();
 in.innerMethod();
 }

 class inner extends B {
 int a = 44;
 public void innerMethod() {
 System.out.println("inner a is " + a);
 System.out.println("parent a is " + super.a) ;

 // scope3.a would work if a was static in the outer class
 System.out.println("outer a is " + scope3.this.a + sc3.a);
 System.out.println("outer parent a is " + scope3.super.a);
 }
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 10

Scope 4 Example
Explores access to inner class from outside the outer class

class outer {
 int a = 3;
 void outfoo() {System.out.println(a);}
 class inner {
 int a = 4;
 void innfoo() {System.out.println(a);}
 }
}

public class scope4 {
 public static void main(String [] aa) {
 outer out = new outer();
 outer.inner in = out.new inner(); in.innfoo();
 // the outer class is initially anonymous in the next line
 outer.inner in2 = (new outer()).new inner(); in2.innfoo();
 System.out.println(in.a + " " + out.a);
 // the 'a' in the outer part of the 'in2' instance might be hard to
 // get at. The associated outer instance must be there, but it is
 // hard to get to.
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 11

Scope 5 Example

This example looks at local inner classes, which means classes that are
declared as internal to a method. These classes can be named or
anonymous, in this case named. One special syntax restriction is that
variables local to the method, or parameters of the method, must be final
in order to be accessed by the inner class. Local inner classes can not be
static. Local inner classes cannot have access modifiers. Error messages
for these violations can be less than perspicuous

import java.io.*;
public class scope5 {
 int a = 5;
 public static void main(String [] aa) {
 scope5 s = new scope5();
 s.foo(s.a,9,3000);
 }
 // in the call above, a var actual param is passed to a const
 // formal parameter b, and this is ok
 public void foo(final int b, final int c, int k) {
 int d = 10;
 final int e = 12;
 class LocalInner {
 void goo() {System.out.println (b + c + e);}
 }
 LocalInner li = new LocalInner(); // li has a longer lifetime than
 // any particular invocation of 'foo'; constants like b,c,e can
 // more easily be made to hang around for as long as a particular
 // li is alive; this is a scope-lifetime issue
 li.goo();
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 12

Scope 6 Example

This example explores anonymous inner classes; these are local classes and as
such have the usual restrictions--they cannot be static and cannot have access
modifiers. An anonymous inner class can either extend a class, or implement an
interface. We try to give both examples here.

In new FaceOff { } the stuff in the braces is an anon. class def. which implements
FaceOff without using the word 'implements'; this is a dumb example, intended to
show the syntax in new ClassLess(666) { ... }, the braces stuff is the anon. inner
class, and the 666 is an argument for the superclass constructor (the superclass
being ClassLess); the inner class extends ClassLess without using 'extends'

interface FaceOff {void foo();}

class ClassLess {
 int zero = 6;
 public ClassLess (int i) {zero = i;}
 public ClassLess(){this(0);}
}

public class scope6 {
 public static void main(String [] aa) {
 // the compiler ralph's if the word 'final' goes bye-bye
 final int two = 3;
 new FaceOff() {
 public void foo(){System.out.println("You hockey puck!");}}.foo();
 new ClassLess(666) {int lucky = 7;
 void moo() {System.out.println(lucky + zero + two);}}.moo();
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 13

Scope 7 Example

This program modifies Fram6.java to use the swing set. Most of the swing set is not
'peer-based'. This means that instead of translating java stuff into host machine
window stuff, java just draws pictures onto blank host machine windows. This takes
more time, but makes the look and feel of swing set applications much more platform
independent. JFrame is actually a subclass of Frame. And JPanel is a subframe of
JComponent, which is a subclass of Component. This program opens two frames of
the same kind, and manages them by not shutting down until both frames are
closed. The window closing event notifies the main method of a window closing.
Thus 'main' acts as a window manager. The windows are treated identically by draw
methods, i.e. by paint().

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class scope7 extends JFrame{
 static int i = 0;
 public scope7() {
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 dispose();
 scope7.dec();
 }
 });
 // the best way to place things on a JFrame is to create a contentPane,
 // which is like an overlay of the JFrame, and place stuff there!
 // The 'stuff' is usually an extension of a JPanel. So a JPanel goes
 // on a contentPane which overlays a JFrame
 Container contentPane = getContentPane();
 contentPane.add(new myPanel());
 }

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 14

Scope 7 Example Continued

 public static void main(String args[]) throws InterruptedException{
 scope7 f = new scope7();
 i++;
 f.setTitle("ducks");
 f.setBounds(20,20,300,100);
 f.show();
 scope7 f2 = new scope7();
 i++;
 f2.setTitle("geese");
 f2.setBounds(350,20,200,200);
 f2.show();
 while (i > 0) {
 System.out.println("i in loop is " + i);
 Thread.sleep(1000);
 }
 System.exit(0); // needed because threads exist
 }
 public static void dec() {i--;}
}

class myPanel extends JPanel {
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // this replaces 'paint' with JFrames
 g.drawString("brouhaha",100,50);
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 15

Exception Example
Class Throwable has kids Error and Exception. Exception has
the kid RuntimeException, with kids like ArithmeticException and
NullPointerException. These are 'unchecked'.

User defined kids of Exception are known as 'checked'
exceptions. There are also predefined kids of Exception, like
IOException, which are also 'checked'.

public class exception {
 public static void main(String [] aa) {
 try { throw new NegException(new Integer(-17));
 }
 catch (NegException e) {
 System.err.println(e);
 System.err.println("The number was " + e.data.intValue());
 }
 }
}
class NegException extends Exception {
 public Integer data;
 NegException(Integer d){
 super("some !@#$! sent me a negative number");
 data = d;
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 16

Exception 2 Example
The assumption below is that main does not want to deal with a
NegException, but is handling it for, maybe, debugging reasons

public class exception2 {
 public static void main(String [] aa) {
 try {sub();}
 catch (NegException e) {
 System.err.println("Don't shine this exception on to me!");
 }
 }

 public static void sub () throws NegException {
 try { throw new NegException(new Integer(-17));
 }
 catch (NegException e) {
 System.err.println(e);
 System.err.println("The number was " + e.data.intValue());
 throw new NegException(e.data);
 }
 }
}
class NegException extends Exception {
 public Integer data;
 NegException(Integer d){
 super("some !@#$! sent me a negative number");
 data = d;
 }
}

11/10/00 Doc 16 Nested Classes & Exceptions Examples slide # 17

Exception 3 Example
The assumption below is that the error object is to be passed up the food
chain, with a little more information added each time until the right guy for
handling the error is reached. 'sub' makes the initial throw, and would
normally do so after, maybe, acquiring a negative value from a user

public class exception3 {
 public static void main(String [] aa) {
 try {sub();}
 catch (NegException e) {
 System.err.println("In main: " + e.ego);
 System.err.println(e);
 System.err.println("The offensive data was " + e.data.intValue());
 }
 }

 public static void sub () throws NegException {
 try { throw new NegException("",new Integer(-17));
 }
 catch (NegException e) {
 throw new NegException("In sub: ",e.data);
 }
 }
}

class NegException extends Exception {
 public Integer data;
 public String ego = "";
 NegException(String s,Integer d){
 super("some !@#$! sent me a negative number");
 data = d;
 ego = s + ego;
 }
}

