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Introduction
History and Languages

1967 Simula

1970 to 1983 Smalltalk developed

1979 Common LISP Object System
1980 Stroustrup starts on C++
1981 Byte Smalltalk issue

1983 Objective C

1986 C++

1987 Actor, Eiffel

1991 C++ release 3.0

199x Volumes of OO books/articles
1992 Refactoring thesis at UIUC
1995 Design Patterns, Squeak
1996 Java

1998 Extreme Programming

2000 Camp Smalltalk, C#
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Other OO Languages

Self
Python
Perl 5
Prograph
Modula 3
Oberon
Scheme
Ruby
Smalltalk Venders
Cincom, IBM, Quasar, Disney
Prolog++
Ada 95
Object Pascal (Delphi)
Object X, X = Fortran, Cobol, etc.
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Methodologies
Approach to developing software
Methodologies encompass
Step-by-step methods
Graphical notation
Documentation techniques
Principles, guidelines, policies
Object-Oriented Design (OOD) Booch
Object-Oriented Systems Analysis (OOSA) Shlaer & Mellor
Object Modeling Technique (OMT) Rumbaugh et al.
Object-Oriented Analysis (OOA) Coad & Yourdon

Hierarchical Object Oriented Design (HOOD) European Space
Agency, HOOD Working Group

Responsibility-Driven Design (CRC) Wirfs-Brock et al.
Object-Oriented Software Engineering (Objectory) Jacobson
Fusion

Rational Unified Process (RUP) Booch, Jacobson, Rumbaugh

Extreme Programming (XP) Kent Beck, Ron Jeffries
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Goals of the Course
Learn how to program using classes and objects

Produce quality software

Quality and Development Time

Development Time

Quality of Software

The right end of the graph with high quality and high development time is found in
projects like the Space Shuttle. The software on the shuttle has to work correctly all the
time. One cannot reboot while the shuttle is in orbit. Most students and many(most?)

companies are on the left side of the graph. They could reduce development by
producing better software.
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The University is not a Software Development Company

Faculty and Students

Cut corners when developing software
Don't pay attention to software development
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Meyer's Criteria for Evaluating for Modularity
Decomposability

Decompose problem into smaller subproblems
that can be solved separately

Example: Top-Down Design

Counter-example: Initialization Module
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Meyer's Criteria for Evaluating for Modularity
Composability

Freely combine modules to produce new systems

Examples: Math libraries
Unix command & pipes
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Meyer's Criteria for Evaluating for Modularity
Understandability

Individual modules understandable by human reader

Counter-example: Sequential Dependencies
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Meyer's Criteria for Evaluating for Modularity
Continuity

Small change in specification results in:
Changes in only a few modules
Does not affect the architecture
Example: Symbolic Constants

const MaxSize = 100
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Meyer's Criteria for Evaluating for Modularity
Protection

Effects of an abnormal run-time condition is confined to a few
modules

Example: Validating input at source
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Principles for Software Development
KISS
Keep it simple, stupid

The simplest thing that could possible work
Supports:
Understandablity

Composability
Decomposability
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Small is Beautiful
See page 185 of Object-Oriented Software Development: A Practical Guide more
information about these guidelines.

Upper bound for average size of an operation

Language Lines of Code
Smalltalk 8
C++ 24

Supports:

Decomposability
Composability
Understandability
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Applications of Principles
First program:

class HelloworldExample

public static void main( String arg9[] )

{
System.out.printin( "Hello World" );
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Some Defintions

Abstraction

Encapsulation

Information Hiding

Coupling

Cohesion
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Abstraction

“Extracting the essential details about an item or group of items,
while ignoring the unessential details.”

Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the common
pattern and provides a means for specifying which variation to
use.”

Richard Gabriel
Example

Pattern: Priority queue

Essential Details: length
items in queue
operations to add/remove/find item

Variation: link list vs. array implementation
stack, queue
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Encapsulation

Enclosing all parts of an abstraction within a container

Information Hiding

Hiding parts of the abstraction

Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are
functionally related



