8/24/00 Doc 1 Intro Lecture, slide 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2000
Doc 1 Intro Lecture

Contents

F g1 0o (B Tox 1 o o APPSR 2
MELNOAOIOGIES........ccvie it ereas 4

Meyer's Criteriafor Evaluating for Modularity..........cccecveieeiie i 7
(D1 ol] 01010 75"= o] 1 Y PSS 7
COMPOSADIITY ...t e neas 8
UNderstandability..........coocieiieiiie e 9
@0 0111 01U 12RO 10
PIOLECTION. ... ettt ettt e e b b e e e 11
Principles for Software DevelOpment............cccvcveevieiie e 12

SOME DEFINTIONS......ceieeiietee ettt ae e ae e sae e sae e nae e 16
ADSITACHTON. ... et a e e 17
ENCAPSUIALION......eeeiieciiecee ettt nb e e be e neeenneas 18
INFfOrMation HidiNG.......cccuiiiiieiee et 18
@0 U 0] 11 o USSR 18
(010 07CS Lo o TSR PR PSRRI 18

References

Object-Oriented Software Construction, Bertrand Meyer,
Prentice Hall, 1988

Object-Oriented Software Development: A Practical Guide, Mark
Lorenz, Prentice Hall, 1993

Copyright ©, All rights reserved.
2000 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on
this document.

8/24/00 Doc 1 Intro Lecture, slide 2

Introduction
History and Languages

1967 Simula

1970 to 1983 Smalltalk developed

1979 Common LISP Object System
1980 Stroustrup starts on C++
1981 Byte Smalltalk issue

1983 Objective C

1986 C++

1987 Actor, Eiffel

1991 C++ release 3.0

199x Volumes of OO books/articles
1992 Refactoring thesis at UIUC
1995 Design Patterns, Squeak
1996 Java

1998 Extreme Programming

2000 Camp Smalltalk, C#

8/24/00 Doc 1 Intro Lecture, slide 3

Other OO Languages

Self
Python
Perl 5
Prograph
Modula 3
Oberon
Scheme
Ruby
Smalltalk Venders
Cincom, IBM, Quasar, Disney
Prolog++
Ada 95
Object Pascal (Delphi)
Object X, X = Fortran, Cobol, etc.

8/24/00 Doc 1 Intro Lecture, slide 4
Methodologies
Approach to developing software
Methodologies encompass
Step-by-step methods
Graphical notation
Documentation techniques
Principles, guidelines, policies
Object-Oriented Design (OOD) Booch
Object-Oriented Systems Analysis (OOSA) Shlaer & Mellor
Object Modeling Technique (OMT) Rumbaugh et al.
Object-Oriented Analysis (OOA) Coad & Yourdon

Hierarchical Object Oriented Design (HOOD) European Space
Agency, HOOD Working Group

Responsibility-Driven Design (CRC) Wirfs-Brock et al.
Object-Oriented Software Engineering (Objectory) Jacobson
Fusion

Rational Unified Process (RUP) Booch, Jacobson, Rumbaugh

Extreme Programming (XP) Kent Beck, Ron Jeffries

8/24/00 Doc 1 Intro Lecture, slide 5

Goals of the Course
Learn how to program using classes and objects

Produce quality software

Quality and Development Time

Development Time

Quality of Software

The right end of the graph with high quality and high development time is found in
projects like the Space Shuttle. The software on the shuttle has to work correctly all the
time. One cannot reboot while the shuttle is in orbit. Most students and many(most?)

companies are on the left side of the graph. They could reduce development by
producing better software.

8/24/00 Doc 1 Intro Lecture, slide 6

The University is not a Software Development Company

Faculty and Students

Cut corners when developing software
Don't pay attention to software development

8/24/00 Doc 1 Intro Lecture, slide 7

Meyer's Criteria for Evaluating for Modularity
Decomposability

Decompose problem into smaller subproblems
that can be solved separately

Example: Top-Down Design

Counter-example: Initialization Module

8/24/00 Doc 1 Intro Lecture, slide 8

Meyer's Criteria for Evaluating for Modularity
Composability

Freely combine modules to produce new systems

Examples: Math libraries
Unix command & pipes

3

‘ﬁ

8/24/00 Doc 1 Intro Lecture, slide 9

Meyer's Criteria for Evaluating for Modularity
Understandability

Individual modules understandable by human reader

Counter-example: Sequential Dependencies

‘ -
.
&

~

8/24/00 Doc 1 Intro Lecture, slide 10

Meyer's Criteria for Evaluating for Modularity
Continuity

Small change in specification results in:
Changes in only a few modules
Does not affect the architecture
Example: Symbolic Constants

const MaxSize = 100
— —
' ~b_—
ﬁ
~—

0—0’

N

|
5P

8/24/00 Doc 1 Intro Lecture, slide 11

Meyer's Criteria for Evaluating for Modularity
Protection

Effects of an abnormal run-time condition is confined to a few
modules

Example: Validating input at source

R

8/24/00 Doc 1 Intro Lecture, slide 12

Principles for Software Development
KISS
Keep it simple, stupid

The simplest thing that could possible work
Supports:
Understandablity

Composability
Decomposability

8/24/00 Doc 1 Intro Lecture, slide 13

Small is Beautiful
See page 185 of Object-Oriented Software Development: A Practical Guide more
information about these guidelines.

Upper bound for average size of an operation

Language Lines of Code
Smalltalk 8
C++ 24

Supports:

Decomposability
Composability
Understandability

Doc 1 Intro Lecture, slide 14

8/24/00
Code Size and Complexity
2
=
E
i
Code Size

8/24/00 Doc 1 Intro Lecture, slide 15
Applications of Principles
First program:

class HelloworldExample

public static void main(String arg9[])

{
System.out.printin("Hello World");

8/24/00 Doc 1 Intro Lecture, slide 16

Some Defintions

Abstraction

Encapsulation

Information Hiding

Coupling

Cohesion

8/24/00 Doc 1 Intro Lecture, slide 17

Abstraction

“Extracting the essential details about an item or group of items,
while ignoring the unessential details.”

Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the common
pattern and provides a means for specifying which variation to
use.”

Richard Gabriel
Example

Pattern: Priority queue

Essential Details: length
items in queue
operations to add/remove/find item

Variation: link list vs. array implementation
stack, queue

8/24/00 Doc 1 Intro Lecture, slide 18

Encapsulation

Enclosing all parts of an abstraction within a container

Information Hiding

Hiding parts of the abstraction

Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are
functionally related

