
11/8/00 Doc 15, Heuristics & Coupling, slide # 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2000

Doc 15 Heuristics & Coupling
Contents

Keep it Small... 2
Common Minimal Public Interface .. 3
Relationships between Objects .. 5

Six different Ways to Implement Uses 6
Heuristics for the Uses Relationship... 8
Containment Relationship... 10

Narrow and Deep Containment Hierarchies............................. 11
No Talking between Fields ... 12

 References

Object-Oriented Design Heuristics, Riel, Addison-Wesley, 1996, Heuristics 2.3, 2.5, 2.6,
3.7, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4,

11/8/00 Doc 15, Heuristics & Coupling, slide # 2

Keep it Small
2.3 Minimize the number of messages in the protocol of a class

2.5 Do not put implementation details such as common-code
private functions into the public interface of a class.

2.6 Do not clutter the public interface of a class with things that
users of the class are not able to use or are not interested in
using.

3.7 Eliminate irrelevant classes from your design.

3.8 Eliminate classes that are outside the system.

11/8/00 Doc 15, Heuristics & Coupling, slide # 3

Common Minimal Public Interface
2.4 Implement a minimal public interface that all classes
understand

This can be applied a global Object class, but also applies to
classes in a project or domain

Java’s Object
clone()

Creates and returns a copy of this object.
equals(Object obj)

Indicates if another object is "equal to" this one.
finalize()

Called by the garbage collector on an object when garbage
collection determines that there are no more references to the
object.

getClass()
Returns the runtime class of an object.

hashCode()
Returns a hash code value for the object.

toString()
Returns a string representation of the object.

Thread Related Methods
notify() wait(long timeout)
notifyAll() wait(long timeout, int nanos)
wait()

Squeak 2.8 (Smalltalk from Disney)
The Object class has 279 instance methods

11/8/00 Doc 15, Heuristics & Coupling, slide # 4

Operations, Classes, Methods

3.9 Do not turn an operation into a class

Does it make sense to have:

DisplayText Class
ParseNameValuePairs Class

11/8/00 Doc 15, Heuristics & Coupling, slide # 5

Relationships between Objects

Type of Relations:

Type Relation between
Uses (Object)
Containment (Object)
Inheritance (Class)
Association (Object)

Uses

Object A uses object B if A sends a message to B

Assume that A and B objects of different classes

A is the sender, B is the receiver

Containment

Class A contains class B when A has a field of type B

That is an object of type A will have an object of type B inside it

11/8/00 Doc 15, Heuristics & Coupling, slide # 6

Six different Ways to Implement Uses

How does the sender access the receiver ?

1. Containment

The receiver is a field in the sender

class Sender {
Receiver here;

public void method() {
here.sendAMessage();

}
}

2. Argument of a method

The receiver is an argument in one of the senders methods

class Sender {
public void method(Receiver here) {

here.sendAMessage();
}

}

11/8/00 Doc 15, Heuristics & Coupling, slide # 7

3. Ask someone else

The sender asks someone else to give them the receiver

How does receiver access the someone else?

class Sender {
public void method() {

Receiver here = someoneElse.getReceiver();
here.sendAMessage();

}
}

4. Creation

The receiver is created by the sender

class Sender {
public void method() {

Receiver here = new Receiver();
here.sendAMessage();

}
}

5 Referential Attribute (Covered later)

6. Global

The receiver is global to the sender

11/8/00 Doc 15, Heuristics & Coupling, slide # 8

Heuristics for the Uses Relationship

4.1 Minimize the number of classes with another class
collaborates

Restaurant
Patron

Melon

Steak

Pie

cost()

Restaurant
Patron

Melon

Steak

Pie

Meal

cost()

11/8/00 Doc 15, Heuristics & Coupling, slide # 9

4.2 Minimize the number of messages sends between a class
and its collaborator

4.3 Minimize the number of different messages a class sends to
another class.

4.4 Minimize the product of the number of methods in a class and
the number of different messages they send.

Which is more complex?

f1() f10() f10()f2()

f3()

f4()

f5()

Class X Class Y Class W Class Z

a()

b()

c()

d()
a()

b()

c()

d()

Class X Class Y Class W Class Z

a()

b()

c()

d()

a()

b()

Class X Class Y Class W

11/8/00 Doc 15, Heuristics & Coupling, slide # 10

Containment Relationship

4.5 If class A contains objects of class B, then A should be
sending messages to its fields of type B.

This heuristic prohibits:
Orphaned fields (ones that are never used)
Fields that are only accessed in get/set methods

The one exception to 4.5 is container classes

class Foo {
Bar data;

public Bar getData() {
return data;

}

public void setData(Bar newData) {
data = newData;

}
}

4.6 Most of the methods defined on a class should be using most
of the fields in the class most of the time

4.7 Classes should not contain more objects than a developer
can fit in his or her short-term memory. A common value for
this number is 6

11/8/00 Doc 15, Heuristics & Coupling, slide # 11

Narrow and Deep Containment Hierarchies

Combining fields into new classes can reduce the number of
fields in a class

MelonSteak

Pie

Meal

Corn

Peas

Potato

A broad and shallow Containment Hierarchy

Melon
Steak

Pie

Meal

Corn

Peas

Potato

Trimmings

SteakPlatter

A narrow and deep Containment Hierarchy

4.8 Distribute system intelligence vertically down narrow and
deep containment hierarchies.

11/8/00 Doc 15, Heuristics & Coupling, slide # 12

No Talking between Fields

4.14 Objects that are contained in the same containing class
should not have a uses relationships between them.

foo()

bar()

Contained Objects with uses relationships

foo()

bar()

The containing class should send messages to the contained
objects

11/8/00 Doc 15, Heuristics & Coupling, slide # 13

4.13 A class must know what it contains, but it should not know
who contains it.

If a number of classes depend on each other in a complex way,
you can violate 4.13 to reduce the number of classes they interact
with.

Wrap the classes in a containing class.

Each contained class sends a message to the containing class,
which broadcasts the message to the proper contained objects

Complex interactions

Replacing complex interaction with containing class

