
September 10, 2000 Doc 5, OO Design Exploratory Phase slide #1

CS 535 Object-Oriented Programming & Design
Spring Semester, 1999

Doc 5 OO Design - Exploratory Phase
Contents

References..1
Overview of Design..3
Exploratory Phase..5

Classes...5
Finding Classes..5
Record Your Candidate Classes...9
Finding Abstract Classes..10

Responsibilities..12
Identifying Responsibilities..13
Scenarios..14
Assigning Responsibilities...16
Examining Relationships Between Classes..21
Recording Responsibilities...25

Collaboration..26
Finding Collaborations...26
Common Collaboration Types...27

Summary of the Exploratory Phase..29

References

Wirfs-Brock, Designing Object-Oriented Software, chapters 1- 5

Mark Lorenz, Object-Oriented Software Development: A
Practical Guide, 1993, Appendix I Measures and Metrics

The best laid schemes o' mice and men often go astray
Robert Burns (1759-1796)

There is always something to upset the most careful of human
calculations

Ihara Saikaku (1642-1693)

Copyright ©, All rights reserved.
2000 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on
this document.

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #2

Object-Oriented Design Process

Exploratory Phase

Who is on the team?

What are their tasks, responsibilities?

Who works with whom?

Analysis Phase

Who's related to whom?

Finding sub teams

Putting it all together

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #3

Overview of Design
Exploratory Phase

• Who is on the team?
What are the goals of the system?

What must the system accomplish?

What objects are required to model the system and
accomplish the goals?

• What are their tasks, responsibilities?
What does each object have to know in order to accomplish
each goal it is involved with?

What steps toward accomplishing each goal is it
responsible for?

• Who works with whom?
With whom will each object collaborate in order to
accomplish each of its responsibilities?

What is the nature of the objects' collaboration

These activities have an analysis flavor to them. Note the link between the
goals of the system and its objects. The state and behavior of an object
are derived, in theory, from the goals. ParcPlace has a design tool that
tracks this relationship. Select a goal, and the tool will list all the objects
required for that goal. Conversely, given any object, the tool will show you
the goal(s) it helps accomplish.

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #4

Overview of Design

Analysis Phase

• Who's related to whom?
Determine which classes are related via inheritance

Finding abstract classes

Determine class contracts

• Finding sub teams
Divide responsibilities into subsystems

Designing interfaces of subsystems and classes

• Putting it all together
Construct protocols for each class

Produce a design specification for each class and
subsystem

Write a design specification for each contract

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #5

Exploratory Phase
Classes

Finding Classes

Noun phrases in requirements specification or system
description

Look at these phrases. Some will be obvious classes, some will be obvious nonsense,
and some will fall between obvious and nonsense. Skip the nonsense, keep the rest. The
goal is a list of candidate objects. Some items in the list will be eliminated, others will be
added later. Finding good objects is a skill, like finding a good functional decomposition.

• Model physical objects

Disks Printers Airplanes

• Model conceptual entities that form a cohesive abstraction

Window File Bank Account

• If more than one word applies to a concept select the one
that is most meaningful

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #6

Finding Classes

• Be wary of the use of adjectives
Adjective-noun phrases may or may not indicate different
objects

Is selection tool different than creation tool?

Is start point different from end point from point?

• Be wary of passive voice
A sentence is passive if the subject of the verb receives the
action

Passive: The music was enjoyed by us

Active: We enjoyed the music

• Model categories of classes
Categories may become abstract classes

Keep them as individual classes at this point

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #7

Finding Classes

• Model known interfaces to outside world
User interfaces

Interfaces to other programs

Write a description of how people will use the system. This
description is a source of interface objects.

• Model the values of attributes, not the attributes themselves
Height of a rectangle

Height is an attribute of rectangle

Value of height is a number

Rectangle can record its height

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #8

Finding Classes

Categories of Classes

Data Managers
Principle responsibility is to maintain data

Examples: stack, collections, sets

Data Sinks or Data Sources
Generate data or accept data and process it further

Do not hold data for long

Examples: Random number generator, File IO classes

View or Observer classes
Example: GUI classes

Facilitator or Helper classes
Maintain little or no state information

Assist in execution of complex tasks

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #9

Record Your Candidate Classes

Class: Account

An Account represents a customer's account
in the bank's database

Record the class name on the front of an index card. One class per card. Write a brief
description of the overall purpose of the class. The front of the card will be filled in with
information as the design process continues. If you prefer to use some other medium (8
1/2" by 11" sheets of paper, computer program) do so. The goal is a tool that will
enhance exploring the model. Once you are experienced with object-oriented design, you
may find better tools. However, while learning, it is hard to find a cheaper tool than index
cards. Even when you have a fancy case tool you might find yourself using these cards
to help with designing parts of programs.

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #10

Finding Abstract Classes

An abstract class springs from a set of classes that share a
useful attribute. Look for common attributes in classes, as
described by the requirement

Grouping related classes can identify candidates for abstract
classes

Name the superclass that you feel each group represents

Record the superclass names

Class: Drawing

Superclass name

Subclass names

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #11

If you can't name a group:
List the attributes shared by classes in the group and derive
the name from those attributes

Divide groups into smaller, more clearly defined groups

If you still can't find a name, discard the group

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #12

Responsibilities

• The knowledge an object maintains

• The actions an object can perform

General Guidelines

Consider public responsibilities, not private ones

Specify what gets done, not how it gets done

Keep responsibilities in general terms

Define responsibilities at an implementation-independent level

Keep all of a class's responsibilities at the same conceptual
level

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #13

Identifying Responsibilities

Requirements specification
Verbs indicate possible actions

Information indicates object responsibilities

The classes
What role does the class fill in the system?

Statement of purpose for class implies responsibilities

Walk-through the system
Imagine how the system will be used

What situations might occur?

Scenarios of using system

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #14

Scenarios

Scenario
A sequence of events between the system and an outside
agent, such as a user, a sensor, or another program

Outside agent is trying to perform some task

The collection of all possible scenarios specify all the existing
ways to use the system

Normal case scenarios
Interactions without any unusual inputs or error conditions

Special case scenarios
Consider omitted input sequences, maximum and minimum
values, and repeated values

Error case scenarios
Consider user error such as invalid data and failure to
respond

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #15

Scenarios

Identifying Scenarios

Read the requirement specification from user's perspective

Interview users of the system

Normal ATM Scenario

The ATM asks the user to insert a card; the user inserts a card.
The ATM accepts the card and reads its serial number.
The ATM requests the password; the user enters "1234."
The ATM verifies the serial number and password with the ATM consortium; the consortium

checks it with the user's bank and notifies the ATM of acceptance.
The ATM asks the user to select the kind of transaction; the user selects "withdrawal."
The ATM asks the user for the amount of cash; the user enters "$100."
The ATM verifies that the amount is within predefined policy limits and asks the consortium to

process the transaction; the consortium passes the request to the bank, which confirms
the transaction and returns the new account balance.

The ATM dispenses cash and asks the user to take it; the user takes the cash.
The ATM asks whether the user wants to continue; the user indicates no.
The ATM prints a receipt, ejects the card and asks the user to take them; the user takes the

receipt and the card.
The ATM asks a user to insert a card.

Special Case ATM Scenario

The ATM asks the user to insert a card; the user inserts a card.
The ATM accepts the card and reads its serial number.
The ATM requests the password; the user enters "9999."
The ATM verifies the serial number and password with the ATM consortium; the consortium

checks it with the user's bank and notifies the ATM of rejection.
The ATM indicates a bad password and asks the user to reenter it; the user hits "cancel."
The ATM ejects the card and asks the user to take it; the user takes the card.
The ATM asks a user to insert a card.

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #16

Assigning Responsibilities

Assign each responsibility to the class(es) it logically belongs to

Evenly Distribute System Intelligence

Intelligence:
What the system knows

Actions that can be performed

Impact on other parts of the system and users

Example: Personnel Record
Dumb version

A data structure holding name, age, salary, etc.

Smart version
An object that:

Matches security clearance with current project

Salary is in proper range

Health benefits change when person gets married

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #17

Assigning Responsibilities

Evenly Distribute System Intelligence

The extremes:
A dictator with slaves

Dumb data structure with all intelligence in main
program and few procedures

Class with no methods

Class with no fields

Object utopia
All objects have the same level of intelligence

Reality
Closer to utopia than to dictator with slaves

Reality check
Class with long list of responsibilities might indicate budding
dictator

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #18

Metric Rules of Thumb

• The average method size should be less than 8 lines of code
(LOC) for Smalltalk and 24 LOC for C++

Bigger averages indicate object-oriented design problems

• The average number of methods per class should be less
than 20

Bigger averages indicate too much responsibility in too few
classes

• The average number of fields per class should be less than 6.

Bigger averages indicate that one class is doing more than
it should

• The class hierarchy nesting level should be less than 6

Start counting at the level of any framework classes you
use or the root class if you don't

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #19

Assigning Responsibilities

State responsibilities as generally as possible

Assume that each kind of drawing element knows how to draw
itself. It is better to say "drawing elements know how to draw
themselves" than "a line knows how to draw itself, a rectangle
knows how to draw itself, etc."

Keep behavior with related information

Abstraction implies we should do this

Keep information about one thing in one place

If two or more objects need the same information:
Create a new object to hold the information

Collapse the objects into a single object

Place information in the more natural object

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #20

Assigning Responsibilities

Share responsibilities

Who is responsible for updating screen when window moves?

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #21

Examining Relationships Between Classes

is-kind-of or is-a
Implies inheritance

Place common responsibilities in superclass

is-analogous-to
If class X is-analogous-to class Y then look for superclass

is-part-of or has-a
If class A is-part-of class B then there is no inheritance

Some negotiation between A and B for responsibilities may
be needed

Example:
Assume A contains a list that B uses

Who sorts the list? A or B?

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #22

Common Difficulties

Missing classes
A set of unassigned responsibilities may indicate a need for
another class

Group related unassigned responsibilities into a new class

Arbitrary assignment
Sometimes a responsibility may seem to fit into two or more
classes

Perform a walk-through the system with each choice

Ask others

Explore ramifications of each choice

If the requirements change then which choice seems
better?

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #23

Relations
or

The Data Base Problem

Mr. White works for the All-Smart Institute

employer

Mr. White All-Smart

The All-Smart Institute employs Mr. White

Mr. White All-Smart

employee

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #24

Relations
or

The Data Base Problem

Model

Mr. White All-Smart

salary
job title

works-for 1N

Implementation

employer

Mr. White All-Smart

employee

Mr. White All-Smart

works-for

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #25

Recording Responsibilities

Class: Drawing

List responsibilites here

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #26

Collaboration

Represents requests from a client to a server in fulfillment of a
client responsibility

Interaction between objects

Finding Collaborations

Examine class responsibilities for dependencies

For each responsibility:
Is class capable of fulfilling this responsibility?

If not, what does it need?

From what other class can it acquire what it needs?

For each class:
What does this class do or know?

What other classes need the result or information?

If class has no interactions, discard it

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #27

Finding Collaborations

Examine scenarios
Interactions in the scenarios indicate collaboration

Common Collaboration Types
The is-part-of relationship

X is composed of Y's

Composite classes
Drawing is composed of drawing elements

Some distribution of responsibilities required

Container classes
Arrays, lists, sets, hash tables, etc.

Some have no interaction with elements

The has-knowledge-of relationship

The depends-upon relationship

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #28

Recording Collaborations

Class: Drawing

Know which elements it
contains

Maintain ordering between
elements

Drawing element

September 10, 2000 Doc 5, OO Design Exploratory Phase slide #29

Summary of the Exploratory Phase

Find classes

Determine responsibilities (state and operations)

Determine collaborations (interactions)

