8/25/00 Doc 2 Classes & Objects, slide 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2000
Doc 2 Classes & Objects

Contents
ClasS & ODJECL.......ueeieeiitie et et sb e b e b e e saeeesseeebeesareesnaeenreeeans 2
SOME BEGINNES EITOIS.....c.iiiiiece ettt ettt st e e e reennee s 9
DireCt ACCESSTO Dalal.......ccccveeiieiiiesiie ettt 9
[[0T T o2 OSSR 10
OK All the DataiS Hidden............coveiiiiiieiiieccee e 11
Information Hiding - Physical and LogicCal...........ccccevieiiieiiecieccee e, 12
MOFE HEUNSHICS. ...ttt et sare e enreas 13
Reading

Object-Oriented Design Heuristics, Riel, Chapters 1 & 2.

Designing Object-Oriented Software, Wirfs-Brock, Chapters 1 &
2

Copyright ©, All rights reserved.
2000 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on
this document.

8/25/00 Doc 2 Classes & Objects, slide 2

Class & Object

Class
Encapsulates a single abstraction

Uses information hiding to insure only the relevant parts of
the abstraction are visible

Abstraction contains:
Data

Operation on the data

Object
An instance of a class

Represents a particular instance of the abstraction

8/25/00 Doc 2 Classes & Objects, slide 3
The Main Point in OO
A class contains:
Data and

Operations on the data

If this is not the case you have a problem!

8/25/00 Doc 2 Classes & Objects, slide 4

Java Example
class Stack {

private float[] elements;
private int topOfStack = -1,

public Stack(int stackSize) {
elements = new float[stackSize];

}

public void push(float item) {
elementq] ++topOfStack | = item;

}

public float pop() {
return elements] topOf Stack-- |;

}

public boolean isEmpty() {
If (topOfStack < 0) return true;
else return false;

}

public boolean isFull() {
iIf (topOfStack >= elements.length) return true;
else return false;

}

}

Objects
Stack me = new Stack(20);
Stack you = new Stack(200);
me.push(5);
you.push(12);
System.out.printin(me.pop());

8/25/00 Doc 2 Classes & Objects, slide 5

C++ Version
class Stack {
public:

Stack();

int iIsEmpty();

int isFull();

void push(int item);
float pop();

private;
float stackElementg 100];
int topOf Stack;

b

Stack :: Stack()
topOfStack = O;

}

int Stack :: isEmpty() {
If (topOfStack ==0) return 1,
else return O;

}

int Stack :: isFull() {
If (topOfStack ==100) return 1;
elsereturn O;}

void Stack :: push(int item) {
stackElementq] topOfStack++ | = item;
}

float Stack :: pop(){
return stackElementg[--topOfStack |;

}

8/25/00 Doc 2 Classes & Objects, slide 6

Using the Stack
int main()
int X; // No op statement at runtime
Stack TreelLinks; /I calls Stack :: Stack() on TreeLinks
TreeLinks.push(5.0);
Stack Nodes; /I calls Stack :: Stack() on Nodes
Nodes.push(3.3);
TreeLinks.push(9.9);
cout << TreeLinks.pop() << endl;

return O;

8/25/00 Doc 2 Classes & Objects, slide 7

Smalltalk Example

Object subclass. #Stack
InstanceV ariableNames:. 'elements'
classVariableNames: "
poolDictionaries: "
category: 'Whitney-Courses

ISEmpty
elements isEmpty

ISFull
Mase

POop
elements removel ast

push: anObject
elements add: anObject

Initidize
elements := OrderedCollection new.
Stack class methodsFor: 'instance creation"

new
super new initialize

8/25/00

| stack result |

stack := Stack new.

stack
push: 3;
push: 'Hi mom’;
push: 4.

result := stack pop.

Doc 2 Classes & Objects, slide 8

Using the Stack

8/25/00 Doc 2 Classes & Objects, slide 9

Some Beginner Errors
Direct Access to Data

class Stack {

public float[] elements,
public int topOf Stack = -1,

public Stack(int stackSize) {
elements = new float[stackSize];

}

public void push(float item) {
elementy] ++topOfStack | = item;
}

public float pop() {
return elementg] topOf Stack-- |;

}

etc.
}

Some students did this once in an assignment. They realized they often performed pop
twice in a row then did a push. To save time they accessed the array of element directly.
But they messed up the array and top of pointer. It took them many hours to debug their
program. Many had to come to me for help. All this to save runtime on a program that
was already 100 times faster than it needed to be!

8/25/00 Doc 2 Classes & Objects, slide 10
Heuristic 2.1

All data should be hidden within its class

Public data affects

Decomposability
Understandability
Continuity
Protection
Coupling

8/25/00 Doc 2 Classes & Objects, slide 11

OK All the Data is Hidden

class StackData {
private float][] elements= new float[100];
private int topOf Stack =-1,
public int getTopOf Stack() {
return topOf Stack;
}

public void setTopOf Stack(int newTop) {
topOf Stack = newTop;

}

public float getElement(int elementindex) {
return elementy elementindex |;

}

public void setElement(int elementlndex, float element) {
elementy] elementindex | = element;

}
}

8/25/00 Doc 2 Classes & Objects, slide 12

Information Hiding - Physical and Logical
Physical Information Hiding

Physical information hiding is when a class has a field and there are accessor methods,
getX and setX, setting and getting the value of the field. It is clear to everyone that there
is a field named X in the class. The goal is just to prevent any direct access to X from the
outside. The extreme example is a struct converted to a class by adding accessor
methods. Physical information hiding provides little or no help in isolating the effects of
changes. If the hidden field changes type than one usually ends up changing the
accessor methods to reflect the change in type.

Logical Information Hiding

Logical information hiding occurs when the class represents some abstraction. This
abstraction can be manipulated independent of its underlying representation. Details are
being hidden from the out side world. Examples are integers and stacks. We use
integers all the time without knowing any detail on their implementation. Similarly we can
use the operations pop and push without knowing how the stack is implemented.

8/25/00 Doc 2 Classes & Objects, slide 13
More Heuristics

2.9 Keep related data and behavior in one place

3.3 Beware of classes that have many accessor methods

defined in their public interfaces. Having many implies that

related data and behavior are not being kept in one place

2.8 A class should capture one and only one key abstraction

8/25/00 Doc 2 Classes & Objects, slide 14

Which is Better?

class StudentA {
public String name;
public String address;
public String phone;

class StudentB {
public String name;
public String address;
public String phone;

public void setName(String newName) {
name = newName;

}

public String getName() {
return name;

}

public void setAddress(String newAddress) {
address= newAddress;

}

public String getAddress() {
return address,

}

etc.
}

