
September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 1

CS 535 Object-Oriented Programming & Design
Fall Semester, 2000

Doc 7 OO Design - Analysis Phase
Contents

Contents...1
References..1
Overview of Design Process...2
Analysis Phase...3

Hierarchies...4
Building Good Hierarchies...5
Identifying Contracts..7

Subsystems..9
Collaboration Graphs...12
Identifying Subsystems..14

Protocols..17
Refining Responsibilities..18

Specifying the Design..21

References

Designing Object-Oriented Software, Wirfs-Brock, chapters 6 - 8

Copyright ©, All rights reserved.
2000 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent
(http://www.opencontent.org/opl.shtml) license defines the copyright on this document.

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 2

Overview of Design Process

Exploratory Phase

Finding the objects

Determining responsibilities

Finding collaborations

Analysis Phase

Finding hierarchies

Finding subsystems

Refining the design

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 3

Analysis Phase

• Finding Inheritance

Determine which classes are related via inheritance

Finding abstract classes

Determine class contracts

• Finding Object Interaction

Divide responsibilities into subsystems

Designing interfaces of subsystems and classes

• Refining the Design

Construct protocols for each class

Produce a design specification for each class and subsystem

Write a design specification for each contract

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 4

Hierarchies

Hierarchy Graphs

Selection
Tool

Tool

Creation
Tool

Denotes
Abstract

Class

Venn Diagrams

Tool Creation
Tool

Selection
Tool

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 5

Building Good Hierarchies

Model a "kind-of" hierarchy

Bank Card
Reader

Input
Device

Output
Device

Display
Device

Deposit
Slot

Receipt
Printer

Display
Screen

Keypad
Cash

Dispenser

Multiple inheritance can be used in the design even if you use an implementation language with single
inheritance.

Make sure that abstract classes do not inherit from concrete classes

Eliminate classes that do not add functionality

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 6

Factor common responsibilities as high as possible

Text
Element

Drawing
Element

Line
Element

Ellipse
Element

Rectangle
Element

Group
Element

Text
Element

Drawing
Element

Line
Element

Ellipse
Element

Rectangle
Element

Group
Element

Linear
Element

Text
Element

Drawing
Element

Line
Element

Ellipse
Element

Rectangle
Element

Group
Element

Linear
Element

Filled
Element

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 7

Identifying Contracts

Contract

Set of requests that a client can make of a server

Cohesive set of responsibilities that a client can depend on

Abstraction of a set of responsibilities of a class

Example: Account Class

Contract: Access and modify the account balance

Responsibilities:

Know the account balance

Accept deposits

Accept withdrawals

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 8

Identifying Contracts

Group responsibilities used by the same clients

Maximize the cohesiveness of classes

Contract of a class should make sense together

Minimize the number of contracts

Use inheritance

Set of classes all supporting a common contract should inherit the
contract from a common superclass

Applying the Guidelines

Start defining contract at the top of the hierarchies

Name and number each contract

For each collaboration, determine which contract represents that
collaboration

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 9

Subsystems

Subsystems are groups of classes, or groups of classes and other
subsystems, that collaborate among themselves to support a set of
contracts

There is no conceptual difference between the responsibilities of a class
and a subsystem of classes

The difference between a class and subsystem of classes is a matter of
scale

A subsystem should be a good abstraction

There should be as little communication between different subsystems as
possible

Dot Matrix
Printer

Laser
Printer

Printing
Subsystem

Printer

Print
Server

1

2

1

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 10

Top-Down, Bottom-Up
Large Systems

Most texts illustrate OO design "bottom-up"

Find objects

Determining responsibilities

Determine object collaboration

Find hierarchies

Determine subsystems

Large systems are designed "top-down"

Find top level subsystems

Determine subsystem responsibilities

Determine subsystem collaboration

Find hierarchies

Iterate above steps on each subsystem

Each level is built "bottom-up"

Levels are done "top-down"

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 11

Top-Down, Bottom-Up
Large Systems

Jacobson, 1991

"The subsystem division in small projects is normally made at the end
of the analysis, when the architecture is clear. In larger projects, however,
it often must be done earlier, in many cases even before the analysis model
has been developed."

"In large systems it is often essential to develop the system in layers."

"For large projects there may be other criteria for subsystem division,
for example:

• Different specialties in different development groups

• If an existing product is to be used in the system, it may be regarded as a
subsystem

• In a distributed environment, a subsystem may be wanted at each logical
node"

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 12

Collaboration Graphs

Dot Matrix
Printer

Laser
Printer

Printing
Subsystem

Printer

Print
Server

1

2

1

Contract

Subsystem

Collaboration

Hierarchies

Contract
Number

Subsystem Contracts

A subsystem contract consists of all class contracts that provide services to
clients outside the system

Subsystem contracts can be extended

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 13

Subsystem Cards

Subsystem: Drawing Subsystem

Access a drawing

Modify part of a drawing

Display a drawing

Drawing

Drawing element

Drawing

Contracts Internal item
supporting contract

Class Cards

Class: File

Document File, Graphics File, Text File

Know its contents

Print its contents Printing Subsystem

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 14

Identifying Subsystems

All objects which have strong coupling should be placed in the same
subsystem

There should be as little communication between different subsystems as
possible

Does a set of classes make sense as an abstraction?

Can you name a group of classes?

Does a group of classes interact frequently?

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 15

Simplifying Interactions

Subsystems

Reduce complexity of a design

Provide coherent structure to the design

Minimize the number of collaborations a class has with other classes or
subsystems

Reassign responsibilities or expand the knowledge of another class to
create fewer collaborations

Create subsystem to reduce collaborations

Minimize the number of classes and subsystems to which a subsystem
delegates

Minimize the number of different contracts supported by a class or a
subsystem

Too many contracts in one subsystem can be a sign that the
subsystem has too much intelligence

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 16

Cash
Register

Warehouse

Inventory
Item

1
Transaction

Log

2
Accounting
Subsystem

3

Cash
Register

Warehouse

Inventory
Item

1
Transaction

Log

2
Accounting
Subsystem

3

Inventory
Manager

4

Inventory
Subsystem

4

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 17

Protocols

Construct protocols for each class

Specify the signatures for the methods that each class will implement

Write a design specification for each class and subsystem

Write a design specification for each contract

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 18

Refining Responsibilities

Turn contracts into protocols

Account contract 1

Access and modify the account balance
Know the account balance
Accept deposits
Accept withdrawals

Protocols

balance() returns Fixed Point Number
deposit(Fixed Point Number)
withdraw(Fixed Point Number)

In general, private responsibilities represent designs notes to an
implementers

Select operation names carefully

Don't use one name to mean two different things

Don't use two names for the same thing

Make protocols as generally useful as possible

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 19

Refining Responsibilities

Define reasonable defaults

First, define the most general message, one that allows clients to
supply all possible required parameters

Next, provide default values for any parameter for which it is
reasonable to do so

Finally, analyze how each client uses this general message. From that
analysis, define a set of messages that allows clients to specify only
some of the parameters, while relying on defaults for the others.

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 20

Refining Responsibilities

Define reasonable defaults

Example: Display of Drawing Elements

Parameters

Display device – printer or screen

Display region – clipping region

Drawing rule – how to combine new bits with old

Transformation – from element space to display space

Defaults

Display device – active window

Display region – entire medium

Drawing rule – over, completely replace old bits

Transformation – identity

Protocol

display()
display(Display Device)
display(Region)
display(Display Device, Region)
display(Display Device, Region, Drawing Rule)
display(Display Device, Region, Drawing Rule, Transformation)

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 21

Specifying the Design
Classes

Class: Drawing (Concrete)

Superclasses: Displayable Object

Subclasses: none

Hierarchy Graphs: page 5

Collaborations Graph: page 8

Description: This class represents the structure of ...

Contracts

1. Display itself

This contract is inherited from Displayable Object

2. Maintain the elements in a drawing

Know which elements are contained in the drawing
addElement (Drawing Element)

uses List
This method adds a drawing element ...
elementAt (Point) returns Drawing Element

uses List, Drawing Element (3)
This method returns the first drawing ...

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 22

Specifying the Design
Classes

• Write the class name and state whether the class is abstract or concrete
List its immediate superclasses and subclasses

• Provide class's position in the hierarchy and collaboration graphs

• Describe the purpose of the class and its intended use

• List each contract for which the class is a server

• For each contract, list the responsibilities of the class that support it.
Under each responsibility, write the signatures of the methods that
implement the responsibility. Include a brief description and note the
collaborations required. Don't neglect error conditions; specify the
behavior of the method for all given inputs.

• List the private responsibilities that have been defined

• Include other relevant information:

behavioral constraints

implementation considerations

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 23

Specifying the Design
Subsystems

Subsystem: Drawing Subsystem

Classes: Control Point, Drawing, Drawing Element, Ellipse Element, Filled
Element, Group Element, Line Element, Linear Element, Rectangle
Element, Text Element

Collaborations Graphs: pages 6 and 8

Description: The Drawing subsystem is responsible for displaying,
maintaining the contents of a drawing. The Drawing Subsystem supports
three contracts. Two are supported by ...

Contracts

1. Display itself
This contract is defined by Displayable Object, and supported by
Drawing
Server: Drawing

2. Access and modify the contents of a drawing
Server: Drawing

3. Modify the attributes of a Drawing Element
Server: Control Point

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 24

Specifying the Design
Subsystems

• Write the subsystem name at the top of the page

• List all encapsulated classes and subsystems

• Provide subsystems position in the hierarchy and collaboration graphs

• Describe the purpose of the subsystem

• List the contracts for which this subsystem is a server

• For each contract, identify the class or subsystem to which the contract is
delegated

September 19, 2000 Doc 7, OO Design - Analysis Phase, slide # 25

Specifying the Design
Formalizing Contracts

Contract 3: Modify the attributes of a drawing element

Server: Control Point

Client: Selection Tool

Description: This contract allows modification of a drawing element
through the manipulation of a control point associated with that element.
The result of moving the control point is specified by the drawing element
at the time the control point is created.

For each contract include:

Contract name and number

Server(s)

Clients

Description of the contract

